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Fig. 1. Compressed streaming level of detail. Using our vector-quantized auto-decoder (VQ-AD) method, we compactly encode a 3D signal in a hierarchical
representation which can be used for progressive streaming and level of detail (LOD). Two example neural radiance fields are shown after streaming from 5 to
8 levels of their underlying octrees. The sizes shown are the total bytes streamed; that is, the finer LODs include the cost of the coarser ones. Prior work such
as NeRF [Mildenhall et al. 2020] requires ≈ 2.5MB to be transferred before anything can be drawn.

Neural approximations of scalar- and vector fields, such as signed distance
functions and radiance fields, have emerged as accurate, high-quality rep-
resentations. State-of-the-art results are obtained by conditioning a neural
approximation with a lookup from trainable feature grids [Liu et al. 2020; Mar-
tel et al. 2021; Müller et al. 2022; Takikawa et al. 2021] that take on part of the
learning task and allow for smaller, more efficient neural networks. Unfortu-
nately, these feature grids usually come at the cost of significantly increased
memory consumption compared to stand-alone neural network models. We
present a dictionary method for compressing such feature grids, reducing
their memory consumption by up to 100× and permitting a multiresolution
representation which can be useful for out-of-core streaming. We formulate
the dictionary optimization as a vector-quantized auto-decoder problem
which lets us learn end-to-end discrete neural representations in a space
where no direct supervision is available and with dynamic topology and
structure. Our source code is available at https://github.com/nv-tlabs/vqad.
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1 INTRODUCTION
Coordinate-based multi-layer perceptrons (MLPs) have emerged
as a promising tool for computer graphics for tasks such as view
synthesis [Mildenhall et al. 2020], radiance caching [Müller et al.
2021; Ren et al. 2013], geometry representations [Davies et al. 2020;
Park et al. 2019], and more [Xie et al. 2021]. Whereas discrete signal
representations like pixel images or voxels approximate continuous
signals with regularly spaced samples of the signal, these neural
fields approximate the continuous signal directly with a continuous,
parametric function, i.e., a MLP which takes in coordinates as input
and outputs a vector (such as color or occupancy).

Feature grid methods [Chan et al. 2021; Liu et al. 2020; Martel et al.
2021; Müller et al. 2022; Takikawa et al. 2021] are a special class of
neural fields which have enabled state-of-the-art signal reconstruc-
tion quality whilst being able to render [Takikawa et al. 2021] and
train at interactive rates [Müller et al. 2021]. These methods embed
coordinates into a high dimensional space with a lookup from a
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