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Abstract
We present an efficient method for joint optimization

of topology, materials and lighting from multi-view im-
age observations. Unlike recent multi-view reconstruction
approaches, which typically produce entangled 3D repre-
sentations encoded in neural networks, we output triangle
meshes with spatially-varying materials and environment
lighting that can be deployed in any traditional graphics en-
gine unmodified. We leverage recent work in differentiable
rendering, coordinate-based networks to compactly repre-
sent volumetric texturing, alongside differentiable march-
ing tetrahedrons to enable gradient-based optimization di-
rectly on the surface mesh. Finally, we introduce a differ-
entiable formulation of the split sum approximation of en-
vironment lighting to efficiently recover all-frequency light-
ing. Experiments show our extracted models used in ad-
vanced scene editing, material decomposition, and high
quality view interpolation, all running at interactive rates
in triangle-based renderers (rasterizers and path tracers).

1. Introduction
3D content creation is a challenging, mostly manual task

which requires both artistic modeling skills and technical
knowledge. Efforts to automate 3D modeling can save sub-
stantial production costs or allow for faster and more di-
verse content creation. Photogrammetry [50, 57] is a popu-
lar technique to assist in this process, where multiple pho-
tos of an object are converted into a 3D model. Game stu-
dios leverage photogrammetry to quickly build highly de-
tailed virtual landscapes [21]. However, photogrammetry
is a multi-stage process, including multi-view stereo [53] to
align cameras and find correspondences, geometric simpli-
fication, texture parameterization, material baking and de-
lighting. This complex pipeline has many steps with con-
flicting optimization goals and errors that propagate be-
tween stages. Artists often rely on a plethora of software
tools and significant manual adjustments to reach the de-
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Figure 1. We reconstruct a triangular mesh with unknown topol-
ogy, spatially-varying materials, and lighting from a set of multi-
view images. We show examples of scene manipulation using off-
the-shelf modeling tools, enabled by our reconstructed 3D model.

sired quality of the final 3D model.

Our goal is to frame this process as an inverse render-
ing task, and optimize as many steps as possible jointly,
driven by the quality of the rendered images of the recon-
structed model, compared to the captured input imagery.
Recent work approaches 3D reconstruction with neural ren-
dering, and provides high quality novel view synthesis [41].
However, these methods typically produce representations
that entangle geometry, materials and lighting into neural
networks, and thus cannot easily support scene editing op-
erations. Furthermore, to use them in traditional graph-
ics engines, one needs to extract geometry from the net-
work using methods like Marching Cubes which may lead
to poor surface quality, particularly at low triangle counts.
Recent neural methods can disentangle shape, materials,
and lighting [4, 68, 70], but sacrifice reconstruction qual-
ity. Also, the materials encoded in neural networks cannot
easily be edited or extracted in a form compatible with tradi-
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tional game engines. In contrast, we reconstruct 3D content
compatible with traditional graphics engines, supporting re-
lighting and scene editing.

In this paper, we present a highly efficient inverse render-
ing method capable of extracting triangular meshes of un-
known topology, with spatially-varying materials and light-
ing from multi-view images. We assume that the object is
illuminated under one unknown environment lighting con-
dition, and that we have corresponding camera poses and
masks indicating the object in these images, as in past
work [4]. Our approach learns topology and vertex po-
sitions for a surface mesh without requiring any initial
guess for the 3D geometry. The heart of our method is a
differentiable surface model based on a deformable tetra-
hedral mesh [55], which we extend to support spatially-
varying materials and high dynamic range (HDR) environ-
ment lighting, through a novel differentiable split sum ap-
proximation. We optimize geometry, materials and lighting
(50M+ parameters) jointly using a highly optimized differ-
entiable rasterizer with deferred shading [22, 32]. The re-
sulting 3D model can be deployed without conversion on
any device supporting triangle rendering, including phones
and web browsers, and renders at interactive rates. In Fig-
ure 1, we show scene editing examples in Blender using our
reconstructed model.

Experiments show our extracted models used in ad-
vanced scene editing, material decomposition, and high
quality view interpolation, all running at interactive rates
in triangle-based renderers (rasterizers and path tracers).

2. Related Work
2.1. Multi-view 3D Reconstruction

Classical methods for multi-view 3D reconstruction ei-
ther exploit inter-image correspondences [1, 13, 14, 53]
to estimate depth maps or use voxel grids to represent
shapes [11, 54]. The former methods typically fuse depth
maps into point clouds, optionally generating meshes [29].
They rely heavily on the quality of matching, and errors are
hard to rectify during post-processing. The latter methods
estimate occupancy and color for each voxel and are often
limited by the cubic memory requirement.

Neural implicit representations leverage differentiable
rendering to reconstruct 3D geometry with appearance from
image collections [26, 41, 44]. NeRF [41] and follow-
ups [40, 43, 51, 63, 69], use volumetric representations and
compute radiance by ray marching through a neurally en-
coded 5D light field. While achieving impressive results
on novel view synthesis, geometric quality suffers from the
ambiguity of volume rendering [69]. Surface-based ren-
dering methods [44, 65] use implicit differentiation to ob-
tain gradients, optimizing the underlying surface directly.
Unisurf [49] is a hybrid approach that gradually reduces the

sampling region, encouraging a volumetric representation
to converge to a surface, and NeuS [62] provides an unbi-
ased conversion from SDF into density for volume render-
ing. Common for all methods is that they rely on ray march-
ing for rendering, which is computationally expensive both
during training and inference. While implicit surfaces can
be converted to meshes for fast inference, this introduces
additional error not accounted for during optimization [55].
We optimize the end-to-end image loss of an explicit mesh
representation, supporting intrinsic decomposition of shape,
materials and lighting by design, and utilizing efficient dif-
ferentiable rasterization [32].

Explicit surface representations are proposed to esti-
mate explicit 3D mesh from images [8, 9, 16, 24, 36, 37, 55].
Most approaches assume a given, fixed mesh topology [8,9,
24, 37], but this is improved in recent work [16, 36, 55]. In
particular, DMTet [55] directly optimizes the surface mesh
using a differentiable marching tetrahedral layer. However,
it focuses on training with 3D supervision. In this work, we
extend DMTet to 2D supervision, using differentiable ren-
dering to jointly optimize topology, materials, and lighting.

2.2. BRDF and Lighting Estimation
Beyond geometry, several techniques estimate surface

radiometric properties from images. Previous work on
SVBRDF estimation rely on special viewing configurations,
lighting patterns or complex capturing setups [3, 6, 17–19,
33, 52, 64]. Recent methods exploit neural networks to pre-
dict BRDF from images [15, 20, 34, 35, 39, 45]. Differen-
tiable rendering based methods [8,9,22,37,71] learn to pre-
dict geometry, SVBRDF and, in some cases, lighting via 2D
image loss. Still, their shape is generally deformed from a
sphere and cannot represent arbitrary topology.

Neural implicit representations successfully estimate
lighting and BRDF from image collections. Bi et al. [3]
and NeRV [59] model light transport to support advanced
lighting effects, e.g., shadows, but have very high compu-
tational cost. Most related to our work are neural 3D re-
construction methods for jointly estimating shape, BRDFs
and lighting from images [4, 5, 68, 70], while providing an
intrinsic decomposition of these terms. Illumination is rep-
resented using mixtures of spherical Gaussians (NeRD [4],

Method Geometry Factorize Training Inference
NeRF [41] NV day seconds
NeRD [4] NV ✓ days seconds
NerFactor [70] NV ✓ days seconds
PhySG [68] NS ✓ day seconds
NeuS [62] NS day seconds
Our Mesh ✓ hour ms

Table 1. Taxonomy of methods. NV: Neural volume, NS: Neural
surface. Factorize indicates if the method supports some decom-
position of geometry, materials, and lighting.
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Figure 2. Overview of our approach. We learn topology, materials, and environment map lighting jointly from 2D supervision. We
leverage differentiable marching tetrahedrons to directly optimize topology of a triangle mesh. While the topology is drastically changing,
we learn materials through volumetric texturing, efficiently encoded using an MLP with positional encoding. Finally, we introduce a
differentiable version of the split sum approximation for environment lighting. Our output representation is a triangle mesh with spatially
varying 2D textures and high dynamic range environment map, which can be used unmodified in standard game engines. The system is
trained end-to-end, supervised by loss in image space, with gradient-based optimization of all stages. Spot model by Keegan Crane.

PhySG [68]), or low resolution envmaps (NeRFactor [70]),
in both cases limited to low frequency illumination. In con-
trast, we propose a differentiable split sum lighting model,
also adopted by the concurrent work Neural-PIL [5]. These
neural implicit methods use multiple MLPs to factorize
the representation, resulting in long training and inference
times. Furthermore, these methods forgo the vast ecosystem
of available 3D modeling and rendering tools, “reinventing
the wheel” for tasks such as rendering, scene editing and
simulation. In contrast, our output is directly compatible
with existing renderers and modeling tools. We optimize
an explicit surface mesh, BRDF parameters, and lighting
stored in an HDR probe, achieving faster training speed and
better decomposition results. Table 1 shows a high level
comparison of the methods.

3. Our Approach
We present a method for 3D reconstruction super-

vised by multi-view images of an object illuminated un-
der one unknown environment lighting condition, together
with known camera poses and background segmentations
masks. The target representation consists of triangle
meshes, spatially-varying materials (stored in 2D textures)
and lighting (a high dynamic range environment probe). We
carefully design the optimization task to explicitly render
triangle meshes, while robustly handling arbitrary topology.
Hence, unlike most recent work using neural implicit sur-
face or volumetric representations, we directly optimize the
target shape representation.

Concretely, we adapt Deep Marching Tetrahedra [55]
(DMTet) to work in the setting of 2D supervision, and
jointly optimize shape, materials, and lighting. At each op-
timization step, the shape representation – parameters of a
signed distance field (SDF) defined on a grid with corre-
sponding per-vertex offsets – is converted to a triangular
surface mesh using a marching tetrahedra layer. Next, we
render the extracted surface mesh in a differentiable raster-
izer with deferred shading, and compute loss in image space
on the rendered image compared to a reference image. Fi-

nally, the loss gradients are back-propagated to update the
shape, textures and lighting parameters. Our approach is
summarized in Figure 2 and each step is described in detail
below; Section 3.1 outlines our topology optimization, Sec-
tion 3.2 presents the spatially-varying shading model, and
our approach for reconstructing all-frequency environment
lighting is described in Section 3.3.

Optimization task Let ϕ denote our optimization param-
eters (i.e., SDF values and vertex offsets representing the
shape, spatially varying material and light probe parame-
ters). For a given camera pose, c, the differentiable renderer
produces an image Iϕ(c). The reference image Iref(c) is a
view from the same camera. Given a loss function L, we
minimize the empirical risk

argmin
ϕ

Ec

[
L
(
Iϕ(c), Iref(c)

)]
(1)

using Adam [30] based on gradients w.r.t. the optimization
parameters, ∂L/∂ϕ, which are obtained through differen-
tiable rendering. Our renderer uses physically based shad-
ing and produces images with high dynamic range. There-
fore, the objective function must be robust to the full range
of floating-point values. Following recent work in differ-
entiable rendering [22], our loss function is L = Limage +
Lmask + λLreg, an image space loss, Limage (L1 norm on
tone mapped colors), a mask loss, Lmask (squared L2) and a
regularizer Lreg (Equation 11) to improve geometry. Please
refer to the supplemental material for details.

Assumptions For performance reasons we use a differ-
entiable rasterizer with deferred shading [22], hence re-
flections, refractions (e.g., glass), and translucency are not
supported. During optimization, we only renderer direct
lighting without shadows. Our shading model uses a dif-
fuse Lambertian lobe and a specular, isotropic microfacet
GGX lobe, which is commonly used in modern game en-
gines [28,31]. Both dielectrics and metal materials are sup-
ported. We note that our approach directly generalizes to a
differentiable path tracer [46, 47], but at a significantly in-
creased computational cost.
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Reference NeRF (57k tris) NeuS (53k tris) NeuS (900k tris) Our (53k tris)
Chamfer L1 ×10−4 33.4 9.19 5.84 4.65

Figure 3. Triangle mesh extraction from a set of 256 rendered images w/ masks. Damicornis model from the Smithsonian 3D repos-
itory [56], We extracted meshes from NeRF and NeuS using Marching Cubes for a target triangle count of roughly 50k triangles and
optimized the example in our pipeline for a similar count. We show renderings of the extracted meshes in a path tracer and report the
Chamfer loss. We note that NeuS, which optimizes a surface representation, significantly improves on the volumetric representation used
by NeRF for this example. Furthermore, our end-to-end optimization of a triangle mesh improves both the visual quality and the Chamfer
loss at a fixed triangle count. When drastically increasing the triangle count in the NeuS mesh extraction (from 53k to 900k triangles), the
quality improves significantly, indicating that NeuS has a high quality internal surface representation. Still, our mesh with 53k triangles is
on par with the high resolution NeuS output, indicating the benefit of directly optimizing the mesh representation.

𝑣𝑖
′ = 𝑣𝑖 + ∆𝑣𝑖
𝑠𝑖 > 0

𝒗′𝒊𝒋 =
𝑣𝑖 ′ ∙ 𝑠𝑗 − 𝑣𝑗′ ∙ 𝑠𝑖

𝑠𝑗 − 𝑠𝑖

𝑠𝑗 < 0

Figure 4. Marching Tetrahedra
extracts faces from a tetrahedral
grid with grid vertices, v′i =
vi + ∆vi and scalar SDF val-
ues, si. For tets with sign(si) ̸=
sign(sj), faces are extracted, and
the face vertices, vij , are deter-
mined by by linear interpolation.

3.1. Learning Topology
Volumetric and implicit shape representations (e.g.,

SDFs) can be converted to meshes through Marching
Cubes [38] (MC) in a post-processing step. However, MC
inevitably imposes discretization errors. As a result, the
output mesh quality, particularly at the moderate triangle
counts typically used in real-time rendering, is often not
sufficient. Similarly, simplifying dense extracted meshes
using decimation tools may introduce errors in rendered ap-
pearance. To avoid these issues, we explicitly render trian-
gle meshes during optimization. We leverage Deep March-
ing Tetrahedra [55] (DMTet) in a 2D supervision setting
through differentiable rendering. DMTet is a hybrid 3D rep-
resentation that represents a shape with a discrete SDF de-
fined on vertices of a deformable tetrahedral grid. The SDF
is converted to triangular mesh using a differentiable march-
ing tetrahedra layer (MT), as illustrated in Figure 4. The
loss, in our case computed on renderings of the 3D model,
is back-propagated to the implicit field to update the surface
topology. This allows us to directly optimize the surface
mesh and rendered appearance end-to-end.

We illustrate the advantage of end-to-end learning in Fig-
ure 3, where we compare our meshes to those generated
by competing methods. While NeRF [41] (volumetric rep.)
and NeuS [62] (implicit surface rep.) provide high quality
view interpolation, the quality loss introduced in the MC
step is significant at low triangle counts.

Given a tetrahedral grid with vertex positions v, DMTet

learns SDF values, s, and deformation vectors ∆v. The
SDF values and deformations can either be stored explic-
itly as values per grid vertex, or implicitly [44, 49] by
a neural network. At each optimization step, the SDF
is first converted to a triangular surface mesh using MT,
which is shown to be differentiable w.r.t. SDF and can
change surface topology in DMTet [55]. Next, the ex-
tracted mesh is rendered using a differentiable rasterizer
to produce an output image, and image-space loss gradi-
ents are back-propagated to the SDF values and offsets (or
network weights). A neural SDF representation can act
as a smoothness prior, which can be beneficial in produc-
ing well-formed shapes. Directly optimizing per-vertex at-
tributes, on the other hand, can capture higher frequency
detail and is faster to train. In practice, the optimal choice
of parametrization depends on the ambiguity of geometry
in multi-view images. We provide detailed analysis in the
supplemental materials.

To reduce floaters and internal geometry, we regularize
the SDF values of DMTet similar to Liao et al. [36]. Given
the binary cross-entropy H , sigmoid function σ, and the
sign function sign(x), we define the regularizer as

Lreg =
∑

i,j∈Se

H (σ(si), sign (sj)) +H (σ(sj), sign (si)) , (2)

where we sum over the set of unique edges, Se, in the tetra-
hedral grid, for which sign(si) ̸= sign(sj). Intuitively, this
reduces the number of sign flips of s and simplifies the sur-
face, thus penalizing internal geometry or floaters. We ab-
late the choice of regularization loss in the supplemental
material.

3.2. Shading Model
Material Model We follow previous work in differen-
tiable rendering [22] and use the physically-based (PBR)
material model from Disney [7]. This lets us easily import
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wire/shaded kd korm normals

Figure 5. We represent 3D models as a triangular mesh and a set
of spatially varying materials following a standard PBR model.

game assets and render our optimized models directly in ex-
isting engines without modifications. This material model
combines a diffuse term with an isotropic, specular GGX
lobe [61]. Referring to Figure 5, the diffuse lobe param-
eters kd are provided as a four-component texture, where
the optional fourth channel α represents transparency. The
specular lobe is described by a roughness value, r, for
the GGX normal distribution function and a metalness fac-
tor, m, which interpolates between plastic and metallic ap-
pearance by computing a specular highlight color accord-
ing to ks = (1 − m) · 0.04 + m · kd [28]. Following
a standard convention, we store these values in a texture
korm = (o, r,m), where o is left unused. Finally, we in-
clude a tangent space normal map, n, to capture high fre-
quency shading detail. We regularize material parameters
using a smoothness loss [70], please refer to our supple-
mental material for details.

Texturing Automatic texture parametrization for surface
meshes is an active research area in computer graphics. We
optimize topology, which requires continually updating the
parametrization, potentially introducing discontinuities into
the training process. To robustly handle texturing during
topology optimization, we leverage volumetric texturing,
and use world space position to index into our texture. This
ensures that the mapping varies smoothly with both vertex
translations and changing topology.

The memory footprint of volumetric textures grows cu-
bically, which is unmanageable for our target resolution.
We therefore extend the approach of PhySG [68], using a
multilayer perceptron (MLP) to encode all material param-
eters in a compact representation. This representation can
adaptively allocate detail near the 2D manifold represent-
ing the surface mesh, which is a small subset of the dense
3D volume. More formally, we let a positional encoding +
MLP represent a mapping x → (kd,korm,n), e.g., given a
world space position x, compute the base color, kd, specu-
lar parameters, korm (roughness, metalness), and a tangent
space normal perturbation, n. We leverage the tiny-cuda-nn
framework [42], which provides efficient kernels for posi-
tional encoding and MLP evaluations.

Once the topology and MLP texture representation have
converged, we re-parametrize the model: we generate
unique texture coordinates using xatlas [66] and sample the
MLP on the surface mesh to initialize 2D textures, then

Figure 6. Sampling out the volumetric representation to create 2D
textures results in texture seams (left). However, further optimiza-
tion (right), quickly removes the seams automatically.

continue the optimization with fixed topology. Referring to
Figure 6, this effectively removes texture seams introduced
by the (u, v)-parametrization, and may also increase texture
detail as we can use high resolution 2D textures for each of
kd, korm, and n. This results in 2D textures compatible
with standard 3D tools and game engines.

3.3. Image Based Lighting
We adopt an image based lighting model, where the

scene environment light is given by a high-resolution cube
map. Following the rendering equation [27], we compute
the outgoing radiance L(ωo) in direction ωo by:

L(ωo) =

∫
Ω

Li(ωi)f(ωi, ωo)(ωi · n)dωi. (3)

This is an integral of the product of the incident radiance,
Li(ωi) from direction ωi and the BSDF f(ωi, ωo). The in-
tegration domain is the hemisphere Ω around the surface
intersection normal, n.

Below, we focus on the specular part of the outgoing ra-
diance, where, in our case, the BSDF is a Cook-Torrance
microfacet specular shading model [10] according to:

f(ωi, ωo) =
DGF

4(ωo · n)(ωi · n)
, (4)

where D, G and F are functions representing the GGX [61]
normal distribution (NDF), geometric attenuation and Fres-
nel term, respectively.

High quality estimates of image based lighting can be
obtained by Monte Carlo integration. For low noise levels,
large sample counts are required, which is typically too ex-
pensive for interactive applications. Thus, spherical Gaus-
sians (SG) and spherical harmonics (SH) are common ap-
proximations for image based lighting [4, 8, 68]. They al-
low for control over the lighting frequency through varying
the number of SG lobes (or SH coefficients), and are effi-
cient representations for low to medium frequency lighting.
However, representing high frequency and highly specular
materials is challenging and requires many SG lobes, which
comes at a high runtime cost and hurts training stability.

We instead draw inspiration from real-time rendering,
where the split sum approximation [28] is a popular, very ef-
ficient method for all-frequency image based lighting. Here,
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Figure 7. Relighting quality for a scene from the NeRFactor
dataset, with our examples relit using Blender, and NeRFactor re-
sults generated using the public code.

the lighting integral from Equation 3 is separated into two
terms:

L(ωo) ≈
∫
Ω

f(ωi, ωo)(ωi·n)dωi

∫
Ω

Li(ωi)D(ωi, ωo)(ωi·n)dωi.

(5)
The first term represents the integral of the specular BSDF

with a solid white environment light. It only depends on the
parameters cos θ = ωi ·n and the roughness r of the BSDF,
and can be precomputed and stored in a 2D lookup texture.
The second term represents the integral of the incoming ra-
diance with the specular NDF, D. Following Karis [28],
this term is also pre-integrated and represented by a filtered
cubemap. In each mip-level, the environment map is in-
tegrated against D for a fixed roughness value (increased
roughness at smaller mips).

The split sum approach is popular for its modest runtime
cost, using only two texture lookups: query the 2D lookup
texture representing the first term based on (r, cos θ) and the
mip pyramid at level r, in direction ωo. This should be com-
pared to evaluating SG products with hundreds of lobes for
each shading point. Furthermore, it uses the standard GGX
parametrization, which means that we can relight our ex-
tracted models with different kinds of light sources (point,
area lights etc.) and use our reconstructed materials with no
modifications in most game engines and modeling tools.

We introduce a differentiable version of the split sum
shading model to learn environment lighting from image
observations through differentiable rendering. We let the
texels of a cube map (typical resolution 6 × 512 × 512)
be the trainable parameters. The base level represents the
pre-integrated lighting for the lowest supported roughness
value, and each smaller mip-level is constructed from the
base level using the pre-filtering approach from Karis [28].

To obtain texel gradients, we express the image based
lighting computations using PyTorch’s auto-differentiation.
However, the pre-filtering of the second term in Equation 5
must be updated in each training iteration, and therefore
warrant a specialized CUDA implementation to reduce the
training cost. This term can either be estimated through
Monte-Carlo integration (BSDF importance sampling), or
by pre-filtering the environment map in a solid-angle foot-
print derived from the NDF. To reduce noise, at the cost of
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Our result Reference rendering

Figure 8. To highlight the benefits of our explicit representation,
we insert two reconstructed models into the Cornell box. Note that
the objects accurately interact with the scene lighting, and cast
shadows (e.g., the green wall). Next, we use our reconstructed
hotdog model in a soft-body physics simulation, dropping red jelly
on the plate. We run the entire simulation (21 frames) on both the
reference 3D mesh and our reconstructed mesh, and display the
last frame. Note that these applications are not currently feasible
for neural volumetric representations.

introducing some bias, we chose the latter approach. Please
refer to our supplemental material for implementation de-
tails.

We additionally create a single filtered low-resolution
(6×16×16) cube map representing the diffuse lighting. The
process is identical to the filtered specular probe, sharing the
same trainable parameters, average-pooled to the mip level
with roughness r = 1. The pre-filtering of the diffuse term
only uses the cosine term, ωi ·n. The two filtering steps are
fully differentiable and are performed at each training step.

4. Experiments
In the following, we evaluate our system for a variety

of applications. To emphasize our approach’s explicit de-
composition into a triangle mesh and materials, we show
re-lighting, editing, and simulation using off-the shelf tools.
We also compare to recent neural methods supporting fac-
torization: NeRD [4] and NeRFactor [70]. While not our
main focus, we include view interpolation results to es-
tablish a baseline comparison to state-of-the-art methods.
Finally, we compare our split-sum approximation against
spherical Gaussians for image-based lighting.

4.1. Scene Editing and Simulation
The main strength of a factorized scene representation

is the freedom it allows with regard to scene editing. Pre-
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Relighting kd

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRFactor 23.78 0.907 0.112 23.11 0.917 0.094
Our 24.53 0.914 0.085 24.75 0.924 0.092

Table 2. Relighting quality for NeRFactor’s synthetic dataset. The
reported image metrics are the arithmetic mean over 8 validation
views and 8 light probes for all 4 test scenes. We also show metrics
for the kd (albedo) textures. Following NeRFactor, we note that
the scale factor between material and lighting is indeterminable
and therefore normalize albedo images by the average intensity of
the reference before measuring errors.

vious work using density-based neural representations only
supports rudimentary relighting and simple forms of scene
edits [4, 68, 70].

In Figure 7 we compare the relighting quality of our re-
constructed model, rendered using the Blender Cycles path
tracer, with the results of NeRFactor (rendered by evaluat-
ing a neural network). A quantitative summary is provided
in Table 2, where we also measure the quality of the re-
constructed albedo textures. We note that our method pro-
duces more detailed results and outperforms NeRFactor in
all metrics. Our artifacts come mainly from the mismatch
between training (using a rasterizer), and inference (using
full global illumination). In areas with strong shadowing
or color bleeding, our material and geometry quality suf-
fer. A differentiable path tracer [48] can likely improve the
material separation in our pipeline, but would require sig-
nificantly more computations.

Our representation can be directly deployed in the vast
collection of 3D content generation tools available for tri-
angle meshes. This greatly facilitates scene editing, which
is still very challenging for neural volumetric representa-
tions [70]. We show advanced scene editing examples in
Figure 8, where we add our reconstructed models from the
NeRFactor dataset to the Cornell box and use them in a soft-
body simulation. Note that our models receive scene illumi-
nation, cast accurate shadows, and robustly act as colliders
for virtual objects. In Figure 1, and the supplemental video,
we show another example, where an object is reconstructed
from real-world photographs and then used as a collider for
a virtual cloth object. The combined scene is then rendered
using our extracted environment light. Note that shading of
the virtual object looks plausible given the reference photo.
We also show material editing on the same example.

4.2. View interpolation
Synthetic datasets We show Results for the NeRF realis-
tic synthetic image dataset in Table 3 and a visual example
of the MATERIALS scene in Figure 9. Per-scene results and
visual examples are included in our supplemental material,
where we also include Chamfer loss on extracted meshes.
Our method consistently performs on par with NeRF, with
better quality in some scenes. The margins are smaller for

Method PSNR↑ SSIM↑ LPIPS↓
PhySG 18.91 0.847 0.182
NeRF 31.00 0.947 0.081
Mip-NeRF 33.05 0.961 0.067
Our 29.05 0.939 0.081

Table 3. Average results for the eight scenes in the NeRF realistic
synthetic dataset. Each scene consists of 100 training images, and
200 test images, with masks and known camera poses. Results
from NeRF are taken from Table 4 of the NeRF paper [41]. PhySG
and Mip-NeRF were retrained using public source code.

Our shaded model Reference image

Mesh /kd/korm/n Extracted probe

Figure 9. Our result on the MATERIALS scene, reconstructed from
100 images from the NeRF synthetic dataset.

Method PSNR↑ SSIM↑ LPIPS↓
NeRF 31.08 0.956 0.064
NeRFactor 26.87 0.930 0.099
Our 31.65 0.967 0.054

Table 4. View interpolation error metrics on NeRFactor’s variant
of the NeRF synthetic dataset. The reported image metrics are the
arithmetic mean over the eight validation images of all four scenes.

perceptually based image metrics (SSIM and LPIPS). We
speculate that density-based volume approaches can more
efficiently minimize PSNR than our opaque meshes. How-
ever, the effect of slightly moving a silhouette edge will not
be as detrimental to a perceptual metric.

The DRUMS and SHIP scenes are failure cases for our
method. We assume mostly direct lighting, with no sig-
nificant global illumination effects, and these scenes con-
tain both significant intra-scene reflections, refractions, and
caustics. Interestingly, while material reconstruction suf-
fers, we still note high quality results for view interpolation.

Given that we factorize into explicit shape, materials and
lighting, we have slightly lower quality on novel view syn-
thesis than methods specialized for view-interpolation. To
put this in context, in Table 4 we compare our aproach
against NeRFactor, which performs a similar factorization,
and our approach. We observe a 4.21 dB PSNR image qual-
ity reduction for NeRFactor compared to the NeRF base-
line. This is consistent with NeRD [4] which do not pro-
vide source code but report a 4.17 dB quality drop for their

7



Reference Our NeRD NeRF

PSNR 25.7 24.3 24.4

PSNR 24.9 21.8 19.0

Figure 10. Reconstruction from photographs (datasets from
NeRD), comparing our results with NeRD and NeRF. Images in
the two rightmost colums were provided by the NeRD authors.
We score higher in terms of image metrics, most likely due to our
mesh representation enforcing opaque geometry, where compet-
ing algorithms rely on volumetric opacity. Despite inconsistencies
in camera poses and masks, our results remain sharp while NeRF
and NeRD suffer from floating or missing geometry.

factorized representation on a subset of the NeRF synthetic
dataset. In contrast, our quality is significantly higher, while
still providing the flexibility of a factorized representation.

Real-world datasets NeRD [4] provides a small dataset
of real-world photo scans with auto-generated (inaccurate)
coverage masks and diverse camera placement.

Visual and quantitative results are shown in Figure 10,
where we have masked out the background for the refer-
ence object. Due to inconsistencies in the dataset, both
NeRF and NeRD struggle to find sharp geometry borders
with transparent “floaters” and holes. In contrast, we get
sharp silhouettes and a significant boost in image quality.
The results reported for NeRD are for their volumetric rep-
resentation. Note that NeRD can generate output meshes
as a post-processing step, but at a significant quality loss
(visual comparison included in our supplemental material).

4.3. Comparing Spherical Gaussians and Split Sum
In Figure 11, we compare our differentiable split sum en-

vironment lighting approximation, from Section 3.3 against
the commonly used spherical Gaussian (SG) model. Split
sum captures the lighting much more faithfully across all
frequencies, while still having a lower runtime cost. In our
implementation, we observe a 5× reduction of optimization
time compared to SG with 128 lobes. At inference, evaluat-
ing the split sum approximation is extremely fast, requiring
just two texture lookups.

5. Limitations and Conclusions
Our main limitation is the simplified shading model, not

accounting for global illumination or shadows. This choice
is intentional to accelerate optimization, but is a limiting

Reference SG 128 Split Sum

Pl
as

tic

PSNR | SSIM 33.74 | 0.968 36.20 | 0.977

M
et

al
PSNR | SSIM 26.31 | 0.936 30.08 | 0.982

Figure 11. Environment lighting approximated with Spherical
Gaussians using 128 lobes vs. Split Sum. The training set consists
of 256 path traced images with Monte Carlo sampled environment
lighting using a high resolution HDR probe. We assume known
geometry and optimize materials and lighting using identical set-
tings for both methods. Reported image metrics are the arithmetic
mean of the 16 (novel) views in the test set. Note that the split sum
approximation is able to capture high frequency lighting. Probe
from Poly Haven [67].

factor for material extraction and relighting. With the cur-
rent progress in differentiable path tracing, we look forward
to this limitation being lifted in future work. We addition-
ally rely on alpha masks to separate foreground from back-
ground. While our method seems quite robust to corrupted
masks, it would be beneficial to further incorporate this step
into the system. Other limitations include the static lighting
assumption, not optimizing camera poses, and high com-
pute resource and memory consumption during training.
Apart from deepfakes, which are common to all scene re-
construction methods, we are not aware of and do not fore-
see nefarious use cases of our method.

In summary, we show results on par with state-of-the-art
for view synthesis and material factorization, while directly
optimizing an explicit representation: triangle meshes with
materials and environment lighting. Our representation is,
by design, directly compatible with modern 3D engines and
modeling tools, which enables a vast array of applications
and simplifies artist workflows. We perform end-to-end
optimization driven by appearance of the rendered model,

8



while previous work often sidestep the error from mesh ex-
traction through Marching Cubes. Our method can be ap-
plied as an appearance-aware converter from a (neural) vol-
umetric or SDF representation to triangular 3D models with
materials, complementing many recent techniques.
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Kalyan Sunkavalli, Miloš Hašan, Yannick Hold-Geoffroy,
David Kriegman, and Ravi Ramamoorthi. Neural reflectance
fields for appearance acquisition, 2020. 2

[4] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Bar-
ron, Ce Liu, and Hendrik P.A. Lensch. NeRD: Neural Re-
flectance Decomposition from Image Collections. In IEEE
International Conference on Computer Vision (ICCV), 2021.
1, 2, 5, 6, 7, 8, 16

[5] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu,
Jonathan T. Barron, and Hendrik P.A. Lensch. Neural-
pil: Neural pre-integrated lighting for reflectance decompo-
sition. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 2, 3

[6] Mark Boss, Varun Jampani, Kihwan Kim, Hendrik Lensch,
and Jan Kautz. Two-shot spatially-varying BRDF and shape
estimation. In Proc. of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 3982–
3991, 2020. 2

[7] Brent Burley. Physically Based Shading at Disney. In SIG-
GRAPH Courses: Practical Physically Based Shading in
Film and Game Production, 2012. 4

[8] Wenzheng Chen, Jun Gao, Huan Ling, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. In Advances In Neural Information Pro-
cessing Systems (NeurIPS), 2019. 2, 5

[9] Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang,
Clement Fuji Tsang, Sameh Khalis, Or Litany, and Sanja Fi-
dler. DIB-R++: Learning to predict lighting and material
with a hybrid differentiable renderer. In Advances in Neural
Information Processing Systems (NeurIPS), 2021. 2

[10] R. L. Cook and K. E. Torrance. A Reflectance Model for
Computer Graphics. ACM Trans. Graph., 1(1):7–24, 1982.
5

[11] Jeremy S De Bonet and Paul Viola. Poxels: Probabilistic
voxelized volume reconstruction. In Proceedings of Interna-
tional Conference on Computer Vision (ICCV), pages 418–
425, 1999. 2

[12] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan.
JaxNeRF: an efficient JAX implementation of NeRF, 2020.
15

[13] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and
robust multiview stereopsis. IEEE transactions on pattern
analysis and machine intelligence, 32(8):1362–1376, 2009.
2

[14] Silvano Galliani, Katrin Lasinger, and Konrad Schindler.
Gipuma: Massively parallel multi-view stereo reconstruc-
tion. Publikationen der Deutschen Gesellschaft für Pho-
togrammetrie, Fernerkundung und Geoinformation e. V,
25(361-369):2, 2016. 2

[15] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and
Xin Tong. Deep Inverse Rendering for High-Resolution
SVBRDF Estimation from an Arbitrary Number of Images.
ACM Trans. Graph., 38(4), 2019. 2

[16] Jun Gao, Wenzheng Chen, Tommy Xiang, Clement Fuji
Tsang, Alec Jacobson, Morgan McGuire, and Sanja Fidler.
Learning Deformable Tetrahedral Meshes for 3D Recon-
struction. In Advances In Neural Information Processing
Systems, 2020. 2

[17] Andrew Gardner, Chris Tchou, Tim Hawkins, and Paul De-
bevec. Linear Light Source Reflectometry. ACM Trans.
Graph., 22(3):749–758, 2003. 2

[18] Abhijeet Ghosh, Tongbo Chen, Pieter Peers, Cyrus A. Wil-
son, and Paul Debevec. Estimating Specular Roughness and
Anisotropy from Second Order Spherical Gradient Illumina-
tion. Computer Graphics Forum, 28(4):1161–1170, 2009.
2

[19] D. Guarnera, G. C. Guarnera, A. Ghosh, C. Denk, and M.
Glencross. BRDF Representation and Acquisition. In Pro-
ceedings of the 37th Annual Conference of the European As-
sociation for Computer Graphics: State of the Art Reports,
pages 625–650, 2016. 2

[20] Yu Guo, Cameron Smith, Miloš Hašan, Kalyan Sunkavalli,
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6. Supplemental Material
In the following, we supplement the paper with addi-

tional results, ablations and implementation details. In Sec-
tion 7 we present novel use cases for our method: auto-
matic level of detail creation from images, and appearance
aware model extraction. In Section 8, we present additional
results, including an evaluation of geometric quality, addi-
tional per-scene statistics and visual examples. Finally, in
Section 9 we provide implementation details, including effi-
cient split-sum pre-integration, regularizer terms and losses.

7. Novel applications
7.1. Level-of-detail From Images

Inspired by a recent work in appearance-driven auto-
matic 3D model simplification [22], we demonstrate level-
of-detail (LOD) creation directly from rendered images of
an object. The previous technique requires an initial guess
with fixed topology and known lighting. We generalize this
approach and showcase LOD creation directly from a set of
images, i.e., we additionally learn both topology and light-
ing. To illustrate this, we generated 256 views (with masks
& poses) from a path tracer, rendered in two resolutions:
1024×1024 pixels and 128×128 pixels, then reconstructed
the mesh, materials and lighting in our pipeline to create
two LOD levels (geometry and spatially-varying materials).
We show visual results in Figure 12 and in the supplemental
video.

7.2. Appearance-Aware NeRF 3D Model Extractor

We devise a way to extract 3D models from neural radi-
ance fields [41] (NeRF) in a format compatible with tradi-
tional 3D engines. Our pipeline for this task has three steps:

NeRF → Marching Cubes → Differentiable renderer.

The dataset consists of 256 images of the Damicornis
model [56] (with masks and poses), rendered in a path
tracer. We first train a NeRF model and extract the mesh
with Marching Cubes. Next, we finetune the extracted
mesh and learn materials parameters (2D textures) using our
differentiable renderer (with DMTet topology optimization
disabled), still only supervised by the images in the dataset.
The output is a triangle mesh with textured PBR materials
compatible with traditional engines. As a bonus, the silhou-
ette quality improves over the Marching Cubes extraction,
which is illustrated in Figure 13.
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Figure 12. Automatic LOD example: We generated 256 views of
an object (with masks & poses) from a path tracer in two resolu-
tions: 1024 × 1024 and 128 × 128 pixels, then reconstructed the
mesh, materials and lighting to approximate LOD creation. Top:
LOD level optimized to look good at a resolution of 128×128 pix-
els with 3k triangles. Bottom: LOD level optimized to look good
at a resolution of 1024× 1024 pixels with 63k triangles.

Marching Cubes Our, finetuned

Reference Our, finetuned

Figure 13. Appearance-aware NeRF 3D model extraction. We
show insets of the silhouette quality before and after our optimiza-
tion pass, alongside insets of the reference and our rendered result.

7.3. 3D Model Extraction with Known Lighting

We observe that the DMTet representation successfully
learns challenging topology and materials jointly, even for

Our Reference

Figure 14. DMTet can accurately capture topology, even in chal-
lenging scenarios. To illustrate this, we show two examples from
the Smithsonian 3D repository [56], where we jointly learn topol-
ogy and materials under known environment lighting. The left
column shows our approximation extracted from multiple 2D ob-
servations (5000 views) and the right side a rendering of the refer-
ence model. In both examples, we start from a tet grid of resolution
1283 and optimize the grid SDF values, vertex offsets and material
parameters.

highly specular models and when lit using high frequency
lighting. We illustrate this in a joint shape and material opti-
mization task with known environment lighting, optimized
using a large number of views. In Figure 14 we show two
examples from the Smithsonian 3D repository [56]. Note
the quality in both the extracted materials and geometric
detail.

8. Results
8.1. Scene Editing and Simulation

This section supplements Section 4.1 in the main pa-
per. In Table 5 we present per-scene breakdowns of re-
lighting results corresponding to Table 2 in the main paper.
An additional visual relighting example is shown in Fig-
ure 15, where we relight the Ficus scene with four different
light probes, comparing to the results of NeRFactor [70].
Figure 16 shows a visual example of material separation
with albedo, kd, and normals, n. In Figure 27 we show
our lighting, material and shape separation for all scenes
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PSNR↑
Scene Drums Ficus Hotdog Lego Avg
NeRFactor 21.94 22.35 25.59 25.25 23.82
Our 22.63 25.71 28.77 21.03 25.24

SSIM↑
Scene Drums Ficus Hotdog Lego Avg
NerFactor 0.912 0.930 0.917 0.870 0.907
Our 0.915 0.961 0.932 0.846 0.911

LPIPS↓
Scene Drums Ficus Hotdog Lego Avg
NeRFactor 0.092 0.095 0.129 0.132 0.112
Our 0.083 0.046 0.092 0.119 0.085

FLIP↓
Scene Drums Ficus Hotdog Lego Avg
NeRFactor 0.083 0.081 0.110 0.095 0.092
Our 0.087 0.063 0.074 0.163 0.097

Table 5. Relighting quality results for the four scenes in NeR-
Factor’s synthetic dataset. The reported metrics are the arithmetic
mean over eight validation views relit with eight different light
probes.
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Figure 15. Relighting quality for a scene from the NeRFactor
dataset, with our examples relit using Blender, and NeRFactor re-
sults generated using the public code.

in the NeRF synthetic dataset. We note that we achieve
significantly more detailed normals (thanks to our shad-
ing model’s’ tangent space normal map) and albedo mostly
decorrelated from lighting. Our remaining challenges are
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Figure 16. Extracted materials for a scene from the NeRFactor
dataset. We directly compare albedo kd and normals n to the re-
sults of NeRFactor. Specular parameters are omitted as we use
different BSDF models. All kd images have been renormalized
using the reference albedo, as suggested in NeRFactor.
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Figure 17. Visual quality examples from the NeRF realistic syn-
thetic dataset comparing our method to PhySG and MipNeRF.
PhySG struggles to accurately capture the complex geometry and
spatially varying materials of the dataset.

areas with strong shadows or global illumination effects,
which are currently not rendered in our simplified shading
model used during optimization.

8.2. View interpolation

This section supplements Section 4.2 in the main pa-
per. In Table 6 we show per-scene breakdowns of the view-
interpolation results corresponding to Table 3 in the main
paper, evaluated on the NeRF Synthetic Dataset. Figure 17
shows a visual comparison to PhySG and MipNeRF for
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PSNR↑
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg
PhySG 21.87 16.45 17.40 21.57 18.81 18.02 19.16 18.06 18.91
NeRF 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.00
MipNeRF 35.08 25.56 33.44 37.38 35.46 30.63 36.38 30.46 33.05
Our 31.60 24.10 30.88 33.04 29.14 26.74 30.78 26.12 29.05

SSIM↑
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg
PhySG 0.890 0.823 0.861 0.894 0.812 0.837 0.904 0.756 0.847
NeRF 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
MipNeRF 0.980 0.934 0.981 0.982 0.978 0.959 0.991 0.885 0.961
Our 0.969 0.916 0.970 0.973 0.949 0.923 0.977 0.833 0.939

LPIPS↓
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg
PhySG 0.122 0.188 0.144 0.163 0.208 0.182 0.108 0.343 0.182
NeRF 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
MipNeRF 0.041 0.104 0.045 0.038 0.053 0.054 0.024 0.177 0.067
Our 0.045 0.101 0.048 0.060 0.061 0.100 0.040 0.191 0.081

FLIP↓
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship Avg
PhySG 0.088 0.140 0.115 0.109 0.139 0.139 0.069 0.159 0.119
MipNeRF 0.028 0.073 0.035 0.026 0.036 0.043 0.016 0.061 0.040
Our 0.034 0.065 0.041 0.033 0.042 0.060 0.024 0.080 0.047

Table 6. Image quality metrics for the NeRF realistic synthetic
dataset. Each training set consists of 100 images with masks and
known camera poses, and the reported image metrics are the arith-
metic mean over the 200 images in the test set. Results for NeRF
are based on Table 4 of the original paper [41], with new mea-
surements for PhySG and MipNeRF using their respective pub-
licly available source code. We additionally report FLIP mean
scores [2]. Note that the Hotdog outlier LPIPS score for NeRF
is consistent with the original paper, but probably a bug.

the CHAIR, MICROPHONE and SHIP scenes. We note that
PhySG struggles to capture the complex geometry of the
NeRF dataset.

To study view interpolation quality for techniques which
support material decomposition, we report per-scene break-
downs of view-interpolation result in Table 7. This corre-
sponds to Table 4 in the main paper. We use the NeRFactor
dataset (which is a subset of the NeRF dataset with simpli-
fied lighting conditions) and compare with NeRFactor and
PhySG.

In Figure 18 we additionally compare view interpolation
quality on a small synthetic dataset containing three scenes
with increasing geometric complexity: KNOB, DAMICOR-
NIS and CERBERUS, each dataset consists of 256 views with
masks and known camera poses, and is validated on 200
novel views. We compare against NeRF (neural volumetric
representation) and NeuS [62] (neural implicit representa-
tion). We provided masks at training for both approaches.
We note that on this dataset, our method performs on par
with NeRF, and consistently produces results with greater
detail and sharpness than NeuS.

8.3. Geometry

Our primary targets are appearance-aware 3D recon-
structions which render efficiently in real-time (e.g. for a

PSNR↑
Scene Drums Ficus Hotdog Lego Avg
PhySG 14.35 15.25 24.49 17.10 17.80
NeRF 27.67 28.05 36.71 31.89 31.08
NeRFactor 24.63 23.14 31.60 28.12 26.87
Our 28.45 31.20 36.26 30.70 31.65

SSIM↑
Scene Drums Ficus Hotdog Lego Avg
PhySG 0.807 0.838 0.909 0.771 0.831
NeRF 0.951 0.957 0.971 0.944 0.956
NeRFactor 0.933 0.937 0.948 0.900 0.930
Our 0.959 0.978 0.981 0.951 0.967

LPIPS↓
Scene Drums Ficus Hotdog Lego Avg
PhySG 0.215 0.176 0.153 0.278 0.206
NeRF 0.069 0.055 0.058 0.075 0.064
NeRFactor 0.082 0.087 0.101 0.124 0.099
Our 0.063 0.047 0.048 0.057 0.054

FLIP↓
Scene Drums Ficus Hotdog Lego Avg
PhySG 0.163 0.133 0.076 0.168 0.135
NeRF 0.045 0.045 0.030 0.037 0.039
NeRFactor 0.058 0.071 0.050 0.058 0.059
Our 0.037 0.037 0.023 0.030 0.032

Table 7. View interpolation results for the four scenes of NeR-
Factor’s synthetic dataset. The NeRF column shows the baseline
NeRF trained as part of NeRFactor’s setup, and is different from
the NeRF in our other view interpolation results. Each training set
consists of 100 images with masks and known camera poses, and
the reported image metrics are the arithmetic mean over the eight
images in the test set.

Chamfer Loss↓
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship
PhySG 0.1341 0.4236 0.0937 0.2420 0.2592 - 0.2712 0.7118
NeRF (w/o mask) 0.0185 0.0536 0.0115 4.6010 0.0184 0.0057 0.0124 2.0111
NeRF (w/ mask) 0.0435 0.0326 0.0145 0.0436 0.0201 0.0082 0.0122 0.2931
Our 0.0574 0.0325 0.0154 0.0272 0.0267 0.0180 0.0098 0.3930

Triangles↓ (Thousands)
Scene Chair Drums Ficus Hotdog Lego Mats. Mic Ship
PhySG 353 439 489 725 498 - 386 557
NeRF (w/o mask) 192 261 585 869 2259 2411 261 1087
NeRF (w/ mask) 494 548 440 694 1106 594 307 3500
Our 102 65 39 57 111 58 22 190

Table 8. Chamfer loss and triangle counts for reconstructed
meshes for the NeRF realistic synthetic dataset. We compare to
the meshes produced by PhySG, and also generate meshes from
the NeRF volume using density thresholding and marching cubes.
Note that we primarily focus on opaque geometry, so the DRUMS,
SHIP, and FICUS scenes with transparency are challenging cases.

game or interactive path tracer). As part of that goal, our
shading model includes tangent space normal maps, which
is a commonly used technique to capture the appearance
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Figure 18. Visual quality examples on the synthetic KNOB and
CERBERUS datasets. We observe slightly blurry results from
NeuS.

KNOB CERBERUS DAMICORNIS

NeRF [41] 2.77e-01 9.08e-03 3.34e-03
NeuS [62] 2.04e-01 2.84e-02 5.84e-04
Our 1.87e-01 1.03e-02 4.66e-04

Figure 19. Synthetic examples with increasing complexity.
Each dataset consists of 256 rendered images at a resolution of
1024×1024 pixels. We report Chamfer L1 scores on the extracted
meshes for NeRF (neural volume), NeuS (neural implicit), and our
explicit approach. Lower score is better.

of high frequency detail at modest triangle counts. For
these reasons, we consider image quality our main evalu-
ation metric, but additionally report Chamfer scores in Ta-
ble 8 for completeness. When comparing with NeRF [41],
we use pretrained checkpoints provided by JaxNeRF1 [12],
which we denote NeRF w/o mask. We note that the pre-

1https://github.com/google-research/google-
research/tree/master/jaxnerf

82k tris 2.5M tris 766k tris 119k tris

192k tris 323k tris 314k tris 311k tris
Reference NeuS NeRF Our

Figure 20. Extracted mesh quality visualization examples on the
synthetic KNOB and CERBERUS datasets.

Reference Our

NeRD (neural) NeRD (mesh)

Figure 21. Example of the quality of the neural NeRD representa-
tion and their final generated mesh. Note the quality loss in both
geometry and appearance (textures).

trained models suffer greatly from floater geometry in some
scenes. To that end, we additionally show results for NeRF
(w/ mask) which further utilizes coverage masks and regu-
larizes density, trading some image quality for better geo-
metric accuracy. To calculate the Chamfer scores, we sam-
ple 2.5M points on both predicted mesh and ground mesh
respectively, and calculate the Chamfer distance between
the two point clouds.

While our meshes have considerably lower triangle
count that the MC extractions, we are still competitive in
terms of Chamfer loss. Note that we primarily focus on
opaque geometry, hence, the DRUMS, SHIP, and FICUS
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Chamfer loss↓
Scene NeRF DVR Our IDR NeuS
scan65 1.44 1.06 1.03 0.79 0.72
scan106 1.44 0.95 1.07 0.67 0.66
scan118 1.13 0.71 0.69 0.51 0.51

Table 9. Quantitative evaluation on the DTU dataset w/ mask.
Chamfer distances are measured in the same way as NeuS [62],
IDR [65], and DVR [44]. Results for NeRF, IDR and NeuS are
taken from Table 1 in the NeuS paper [62], and the DVR results
are taken from Table 8, 9 and 10 in the DVR supplemental mate-
rial. We also reevaluated the DVR scores using the DTU MVS
dataset evaluation scripts [25] to verify the evaluation pipeline.
Our Chamfer distances are lower than NeRF, roughly on par with
DVR, but higher than the current state-of-the-art (IDR/NeuS).
Still, we find these results encouraging, considering that we pro-
vide an explicit mesh with factorized materials.

scenes with transparency are challenging cases.
In Figure 19, we report Chamfer loss on three synthetic

datasets of increasing geometric complexity. Interestingly,
the neural implicit version performs very well on the or-
ganic shapes, but struggles on the CERBERUS robot model,
where NeRF provide the lowest Chamfer loss. Visual com-
parisons of rendered reconstruction quality are included in
Figure 18 and a visualization of the Lambertian shaded
mesh is included in Figure 20.

We additionally present an example of an output mesh
generated by NeRD [4] in Figure 21. The impact of the
mesh extraction step is notable, both to geometry and ma-
terial quality. As we only have this single data point, with
no means of accurately aligning the meshes for measuring
geometric loss (NeRD does not provide source code), we
will not provide metrics.

8.4. Multi-View Stereo Datasets

Our experiments with scans from a limited view angle,
low number of views, and/or varying illumination, e.g., the
DTU MVS datasets [25], shows that our approach work
less well than the recent neural implicit versions, such as
NeuS [62], Unisurf [49], and IDR [65], which we attribute
to a more regularized, smoother shape representation for the
neural implicit approaches, and our physically-bases shad-
ing model which assumes constant lighting. -We provide
quantitative results for three scans from DTU in Table 9,
and visual examples of our results on three scans in Fig-
ure 22.

The sparse viewpoints and varying illumination (which
breaks our shading model assumption of constant light-
ing) in the DTU datasets lead to strong ambiguity in the
reconstructed geometry. In this case, we noticed that di-
rectly optimizing the per-vertex SDF values results in high-
frequency noise in the surface mesh. Instead, we follow
the approach of the neural implicit approaches and use an

MLP to parametrize the SDF values, which implicitly reg-
ularize the SDF, and, as a consequence, the resulting sur-
face geometry produced by DMTet. The smoothness of the
reconstructed shape can be controlled by the frequency of
the positional encoding applied to the inputs of the MLP,
as shown in Figure 23. On the contrary, in case of densely
sampled viewpoints and constant illumination, we observed
that directly optimizing per-vertex attributes better captures
high-frequency details, as shown in Figure 24, and is faster
to train. We use direct optimization of per-vertex SDF val-
ues in all results presented in the paper, except for the DTU
scans, and the NeRF hotdog example, where we obtained
better geometry reconstruction using the MLP parameteri-
zation.

We use the same MLP as in DVR [44], which consists
of five fully connected residual layers with 256 hidden fea-
tures. In addition, we adopt the positional encoding in
NeRF [41] and progressively fit the frequencies similar to
SAPE [23]. More specifically, for an input position p and
a set of encoding functions e1, e2, . . . , en with increasing
frequencies, we multiply each encoding en(p) with a soft
mask αn(t) at training iteration t. The first nbase encodings
are always exposed to the network, and we linearly reveal
the rest during training such that:

αn(t) =

{
1 n ≤ nbase

min(1, t
tf
) n > nbase

(6)

where tf is the iteration when all encodings are fully re-
vealed. In practice, we find that progressively fitting the
frequencies produces less high-frequency artifacts on the re-
constructed surface than the non-progressive scheme.

9. Implementation
9.1. Optimization

Unless otherwise noted, we start from a tetrahedral grid
of resolution 128 (using 192k tetrahedra and 37k vertices).
As part of the Marching Tetrahedral step, each tetrahedron
can generate up to two triangles.

We initialize the per-vertex SDF values to random val-
ues in the range [−0.1, 0.9], such that a random selection of
approximately 10% of the SDF values will report “inside’
status at the beginning of optimization. The per-vertex off-
sets are initialized to zero.

Textures are initialized to random values within the valid
range. We also provide min/max values per texture chan-
nels, which are useful when optimizing from photographs,
where we follow NeRFactor [70] and us a range on the
albedo texture of kd ∈ [0.03, 0.8]. Similarly, we limit the
minimal roughness value (green channel of the korm tex-
ture) to 0.08 (linearized roughness). The tangent space nor-
mal map is initialized to (0, 0, 1), i.e., following the sur-
face normal with no normal perturbation. The environment

16



Reference Our kd korm normals HDR probe

Sc
an

65
Sc

an
10

6
Sc

an
11

8

Reference Our kd korm normals HDR probe

Figure 22. Our decomposition results on scan 65, 106, and 118 of the DTU MVS dataset [25]. Our model is trained on a reduced subset
(49 of the 64 views) which has more consistent lighting across views, labelled by DVR [44]. However, we still penalize mask loss on the
excluded views.

Grid MLP f:4 MLP f:6

Figure 23. Comparing grid vs. MLP parametrizations of DMTet
on scan 65 from the DTU MVS dataset [25]. Directly optimizing
SDF values at grid vertices leads to a surface with high-frequency
noise (left). In contrast, if we use an MLP to parametrize the
SDF values, we can regularize the geometry, with smoothness con-
trolled by the frequency of positional encoding. We use the posi-
tional encoding in NeRF [41] with frequency set to 4 (middle) and
6 (right) respectively.

light texels are initialized to random values in the range
[0.25, 0.75], which we empirically found to be a reasonable
starting point in our tests.

We use the Adam [30] optimizer with default settings
combined with a learning rate scheduler with an exponen-
tial falloff from 1.0 to 0.1 over 5000 iterations. We typ-
ically train for 5000 iteration using a mini-batch of eight

Grid MLP 6

Figure 24. Comparing grid vs. MLP parametrization of DMTet
on the synthetic DAMICORNIS dataset. Directly optimizing per-
vertex SDF and offsets on a grid is faster to train, and better cap-
tures high-frequency geometric details than parametrizing DMTet
with a network.

images, rendered at the native resolution of the images in
the datasets (typically in the range from 512×512 pixels to
1024×1024 pixels). Next, after texture reparametrization,
we finetune geometry and 2D textures with locked topol-
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ogy for another 5000 iterations. The entire process takes
approximately an hour on a single NVIDIA V100 GPU,
with indicative results after a few minutes. We include a
training visualization in the supplemental video.

In DTU experiments, we set n = 6, nbase = 4 and
tf = 2500 for the progressive positional encoding. We dis-
able the normal perturbation and second-stage optimization
to get the best geometric quality, and train DMTet for 10k
iterations.

9.2. Losses and Regularizers

Image Loss Our renderer uses physically based shading
and produces images with high dynamic range. Therefore,
the objective function must be robust to the full range of
floating-point values. Following recent work in differen-
tiable rendering [22], our image space loss, Limage, com-
putes the L1 norm on tone mapped colors. As tone map
operator, we transform linear radiance values, x, according
to x′ = Γ(log(x + 1)), where Γ(x) is the sRGB transfer
function [60]:

Γ(x) =

{
12.92x x ≤ 0.0031308

(1 + a)x1/2.4 − a x > 0.0031308
(7)

a = 0.055.

Light Regularizer Real world datasets contain primarily
neutral, white lighting. To that end, we use a regularizer for
the environment light that penalizes color shifts. Given the
per-channel average intensities ci, we define the regularizer
as:

Llight =
1

3

3∑
i=0

∣∣∣∣∣ci − 1

3

3∑
i=0

ci

∣∣∣∣∣ . (8)

Material Regularizer As mentioned in the paper, we reg-
ularize material parameters using a smoothness loss similar
to NeRFactor [70]. Assuming that kd (x) denotes the kd

parameter at world space position x and ϵ is a random dis-
placement vector, we define the regularizer as:

Lmat =
∑
xsurf

|kd (xsurf)− kd (xsurf + ϵ)| . (9)

To account for the lack of global illumination and shad-
owing in our differentiable renderer, we use an additional,
trainable visibility term which can be considered a regular-
izer. We store this term in the otherwise unused o-channel
of the korm specular lobe parameter texture and use it to
directly modulate the radiance estimated by our split sum
shading model. Thus, it is similar to a simple ambient oc-
clusion term and does not account for directional visibility.

Figure 25. Cross sections of shapes optimized without regular-
ization loss on SDF (left), with smoothness loss used by Liao
et al. [36] (middle) and with our regularization loss (right). The
random faces inside the object are removed by the regularization
loss on SDF.

Laplacian Regularizer In the second pass, when topol-
ogy is locked, we use a Laplacian regularizer [58] on the
triangle mesh to regularize the vertex movements. The
uniformly-weighted differential δi of vertex vi is given by
δi = vi − 1

|Ni|
∑

j∈Ni
vj , where Ni is the one-ring neigh-

borhood of vertex vi. We follow Laine et al. [32] and use a
Laplacian regularizer term given by

Lδ =
1

n

n∑
i=1

∥δi − δi
′∥2 , (10)

where δi
′ is the uniformly-weighted differential of the input

mesh (i.e., the output mesh from the first pass).

SDF Regularizer If we only optimize for image loss, in-
ternal faces which are not visible from any viewpoint do not
receive any gradient signal. This leads to random geometry
inside the object, as shown in Fig. 25, which is undesirable
for extracting compact 2D textures. To remove the internal
faces, we regularize the SDF values of DMTet similar to
Liao et al. [36] as described in the main paper (Eqn. 2). The
L1 smoothness loss proposed by Liao et al., adapted from
occupancy to SDF values, can be written as:

Lsmooth =
∑

i,j∈Se

|si − sj |, (11)

where Se is the set of unique edges, and si represents the
per-vertex SDF values. In contrast, our regularization loss
explicitly penalizes the sign change of SDF values over
edges in the tetrahedral grid. Empirically, our loss more
efficiently removes internal structures, as shown in Fig. 25.

In our DTU experiments, we use an additional regular-
ization loss to removes the floaters behind the visible sur-
face, as illustrated in Fig 26. Specifically, for a triangular
face f extracted from tetrahedron T , if f is not visible in
current training views, we encourage the SDFs at vertices
of T to be positive with BCE loss.

9.3. Split Sum Implementation Details

We represent the trainable parameters for incoming
lighting as texels of a cube map (typical resolution 6×512×
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Figure 26. Reconstruction of scan 65 from the DTU MVS
dataset [25] without (left) and with (right) the regularization loss
based on visibility of faces. The regularization loss removes
floaters behind the object that are not visible from the training
views.

ALGORITHM 1: Computation of the loss gradient w.r.t,
inputs, ∂L

∂X
, for a 2D convolution, expressed as a gather

or scatter operation. We use the notation xi,j to denote
element (i, j) of the tensor X .

Input: output gradient: ∂L
∂Y

, weight tensor: W
∂L
∂X

= 0 ;
for i, j ∈ pixels do

for k, l ∈ footprint do
∂L

∂xi,j
+= WT

k,l · ∂L
∂yi+k,j+l

; // gather
∂L

∂xi+k,j+l
+= Wk,l · ∂L

∂yi,j
; // scatter

512). The base level represents the pre-integrated light-
ing for the lowest supported roughness value, which then
linearly increases per mip-level. Each filtered mip-map is
computed by average-pooling the base level texels to the
current resolution (for performance reasons, the quantiza-
tion this process introduces is an acceptable approximation
for our use case). Then, each level is convolved with the
GGX normal distribution function. We pre-compute accu-
rate filter bounds per mip-level (the filter bound is a function
of the roughness, which is constant per mip level).

The loss gradients w.r.t. the inputs, ∂L
∂X , for a convolu-

tion operation can be computed as a gather operation using
products of the transposed weight tensor, WT , and the out-
put gradient, ∂L

∂Y , within the filter footprint. However, in
cube maps, the filter footprint may extend across cube edges
or corners, which makes a gather operation non-trivial. We
therefore express the gradient computation as a scatter op-
eration, which can be efficiently implemented on the GPU
using non-blocking atomicadd instructions. We illustrate
the two approaches in Algorithm 1.

10. Scene Credits
Mori Knob from Yasotoshi Mori (CC BY 3.0). Cer-

berus model used with permission from NVIDIA. Dam-
icornis, Saxophone, and Jackson models courtesy of the
Smithsonian 3D repository [56], (CC0). Spot model (pub-
lic domain) by Keegan Crane. NeRD datasets (moldGold-

Cape, ethiopianHead) (Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International). The NeRF
and NeRFactor datasets contain renders from modified
blender models located on blendswap.com: chair by 1DInc
(CC-0), drums by bryanajones (CC-BY), ficus by Herber-
hold (CC-0), hotdog by erickfree (CC-0), lego by Heinzel-
nisse (CC-BY-NC), materials by elbrujodelatribu (CC-0),
mic by up3d.de (CC-0), ship by gregzaal (CC-BY-SA).
Probes from Poly Haven [67] (CC0) and the probes pro-
vided in the NeRFactor dataset which are modified from
the probes (CC0) shipped with Blender. DTU scans from
the DTU MVS dataset [25].
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Figure 27. Our decomposition results on the NeRF Synthetic dataset. We show our rendered models alongside the material textures: diffuse
(kd), roughness/metalness (korm), the normals, and the extracted lighting.
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