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Fig. 1. A path-traced frame from the Zero Day animation (left) and the Living Room scene (right), rendered with 1 sample per pixel each. Direct-illumination
sampling such as ReSTIR [Bitterli et al. 2020] reduces noise at the first path vertex, but does not address noise from indirect illumination. We propose to reduce
the remaining noise by (online) training a neural network to approximate the radiance field—a new take on classical radiance caching. Terminating the paths
into the neural cache not only shortens paths—leading to an overall cost reduction in the Zero Day scene—but also removes most of the remaining noise while
introducing little bias. The images were rendered at a resolution of 1920 × 1080 on a high-end desktop machine (i9 9900k and RTX 3090). Zero Day ©beeple

We present a real-time neural radiance caching method for path-traced

global illumination. Our system is designed to handle fully dynamic scenes,

and makes no assumptions about the lighting, geometry, and materials. The

data-driven nature of our approach sidesteps many difficulties of caching

algorithms, such as locating, interpolating, and updating cache points. Since

pretraining neural networks to handle novel, dynamic scenes is a formidable

generalization challenge, we do away with pretraining and instead achieve

generalization via adaptation, i.e. we opt for training the radiance cache while
rendering. We employ self-training to provide low-noise training targets and

simulate infinite-bounce transport by merely iterating few-bounce training

updates. The updates and cache queries incur a mild overhead—about 2.6ms
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on full HD resolution—thanks to a streaming implementation of the neural

network that fully exploits modern hardware. We demonstrate significant

noise reduction at the cost of little induced bias, and report state-of-the-art,

real-time performance on a number of challenging scenarios.
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1 INTRODUCTION
Path-traced global illumination is a long standing challenge in real-

time rendering [Keller et al. 2019]. The problem remains onerous

even in offline rendering, especially when considering high-order

indirect illumination. Fortunately, radiative quantities feature sig-

nificant spatial, directional, and temporal correlations, which can

be exploited in various ways to accelerate rendering.

One particularly appealing approach is to cache radiance samples

for later reuse. This can be done in a precomputation step [Seyb

et al. 2020], or while rendering [Majercik et al. 2019]. Such sys-

tems, however, can be difficult to harness, as they often rely on

human intervention or involved heuristics to minimize rendering

artifacts [Hooker 2016]. We propose to alleviate these difficulties

through the use of a neural radiance cache, as neural networks are
known to be particularly apt at replacing complex heuristics. Our

system is designed according to the following principles:

• Dynamic content. To handle fully interactive content, the

system must support arbitrary dynamics of the camera, light-

ing, geometry, and materials. We strive for a solution that

does not require precomputation.

• Robustness. Case-specific handling eventually leads to com-

plex, brittle systems. Hence, the cache should be agnostic of

materials and scene geometry. This is particularly important

for user-generated content, where design assumptions cannot

be easily enforced. Yet, additional attributes may be provided

to the system to improve its rendering quality.

• Predictable performance and resource consumption. Fluc-
tuations in work load and memory usage lead to unstable

framerates. We seek a solution with stable runtime overhead

and memory footprint, both of which should be independent

of scene complexity. The rendering cost must scale at worst

linearly with the number of pixels.

The first two principles—dynamic content and robustness—present

a major challenge for pre-trained networks: the trained model must

generalize to novel configurations and, worse, content possibly

never observed before. This form of generalization has not been

demonstrated with previous approaches in the context of learning

radiative quantities [Hermosilla et al. 2019; Mildenhall et al. 2020;

Ren et al. 2013], and it is unclear if it can ever be achieved.

Instead, we build on the simple but powerful realization that

the generalization challenge can be completely sidestepped by fast

adaptation. We rely solely on optimizing the model online, during
rendering. Online learning of neural networks has so-far only been

used in offline and interactive rendering [Lehtinen et al. 2018; Müller

et al. 2019; Müller et al. 2020]. Fitting the optimization and inference

inside the tight rendering loop of real-time applications is a non-

trivial task that remains to be tackled.

We present two key contributions that enable generalization via
adaptation in real time. First, we describe an efficient mechanism

for optimizing the network using (relatively) inexpensive radiance

estimates. The core of this mechanism is self-training of the neural

network from its own prediction at a later vertex of the path, pro-

viding multi-bounce illumination at the cost of tracing single rays

or very short paths.

Second, we propose a streamlined network architecture designed

to maximize the quality-cost tradeoff when rendering fully dynamic

scenes. This architecture is key to our system, as its simplicity not

only leads to extremely fast convergence but also enables extensive

optimizations. To fully exploit these opportunities, we propose a

fully fused implementation tailored to modern GPUs; the underly-

ing principles however are general and could be adapted to a range

of platforms. We also show how recently proposed input encod-

ings [Mildenhall et al. 2020; Müller et al. 2019] can be combined to

greatly enhance fidelity even with our severely constrained budget.

As shown in Figure 1, our system achieves real-time framerates on

current hardware and handles a wide range of material and lighting

configurations. Our accompanying video demonstrates the temporal

adaptation to dynamic geometry and lighting. Lastly, we report

preliminary results with an off-the-shelf denoiser demonstrating

significantly improved temporal coherence when using our cache.

2 RELATED WORK
Reviewing techniques for accelerating global illumination by radi-

ance caching, we focus on precomputation-based techniques, fully

dynamic algorithms, and approaches based on artificial neural net-

works that are most related to our work. For an extensive survey

we refer to Ritschel et al. [2012].

Radiance caching. Most real-time global illumination techniques

can be traced back to the seminal work of Ward et al. [1988] on

irradiance caching. Modern techniques for modeling diffuse inter-

reflections follow the same assumption that irradiance tends to

vary smoothly across the scene, and texture detail can be recov-

ered using albedo modulation. Later, Greger et al. [1998] introduced

the irradiance probe volume, which became ubiquitous in modern

game engines. The interpolation and location of the various cache

records is a key challenge in these techniques, especially when the

aforementioned assumptions on smoothness do not hold. While

robust, principled solutions exist [Jarosz et al. 2008; Křivánek and

Gautron 2009], real-time applications often have to resort to clever

heuristics and impose restrictions on scene design to fit their harsh

constraints. In order to handle glossy surfaces, which invalidate the

Lambertian assumption at the core of irradiance caching algorithms,

Křivánek et al. [2005] proposed the use of a radiance cache, repre-

senting the directional domain with spherical harmonics. A wealth

of recent works further explored the use of radiance caching in of-

fline [Dubouchet et al. 2017; Marco et al. 2018; Zhao et al. 2019] and

real-time rendering, where advances in real-time rendering were

enabled for example by compression [Vardis et al. 2014], sparse

interpolation [Silvennoinen and Lehtinen 2017], pre-convolved en-

vironment maps [Rehfeld et al. 2014; Scherzer et al. 2012], and spatial

hashing [Binder et al. 2018; Pantaleoni 2020]. In contrast, our own

work achieves robustness through online deep learning.

Precomputation-based techniques. The high computational cost

of simulating global illumination spurred the development of pre-

computation techniques [Arvo 1986; Heckbert 1990], which have

been further developed to address the stringent constraints of real-

time applications. Assuming both the scene lighting and geometry

are fixed, irradiance can be computed and then stored in texture
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space using lightmaps [Abrash 1997] and in world space using light

probes [Oat 2005]. Offering both approaches in one system, Martin

and Einarsson [2010] introduced iterated dynamic lighting updates.

These techniques are widespread in modern game engines [Barré-

Brisebois 2017]. Light probes can be combined with precomputed

radiance transfer [Sloan et al. 2002] or visibility [Iwanicki and Sloan

2017; McGuire et al. 2017], to account for (self) occlusion when

shading scene objects. While precomputation-based solutions offer

a number of indisputable advantages [Seyb et al. 2020], we embrace

online caching mechanisms that facilitate dynamically changing

scenes without assuming (parts of) the scene to be static or known

in advance.

Fully dynamic techniques. Dynamic real-time global illumina-

tion methods build upon efficient rendering algorithms that reuse

shading and visibility computation across pixels, such as photon

mapping [Jensen 1996], many-light rendering [Keller 1997] and ra-

diosity maps [Tabellion and Lamorlette 2004], extracting further

efficiency through various approximations. Some approximate the

scene geometry using a (hierarchical) point cloud, which is then

efficiently rasterized into shadow maps [Ritschel et al. 2008] or

micro-rendering buffers [Ritschel et al. 2009a]. Volumetric approxi-

mations of the scene lighting and geometry [Crassin et al. 2011; Ka-

planyan and Dachsbacher 2010], bootstrapped with large numbers

of virtual point lights from reflective shadow maps [Dachsbacher

and Stamminger 2005], allowed to scale to larger scenes. These ap-

proaches are sometimes combined with very efficient screen-space

approximations of ambient occlusion [Mittring 2007], directional

occlusion [Ritschel et al. 2009b], or reflections [Sousa et al. 2011].

Recently, ray-tracing hardware has been used to compute specific

components of light transport online, such as diffuse interreflec-

tions [Majercik et al. 2019] or glossy reflections [Deligiannis and

Schmid 2019]. Aside of accuracy limitations inherent to the approx-

imations, such as blurring, missing interactions, or assumptions

about the material model, a key limitation of many of these tech-

niques is the reliance on a dual representation of the scene which

must be continuously refreshed. Our neural radiance cache sidesteps

the need for an approximate scene representation by operating on a

set of sampled path contributions, which effectively decouples the

algorithm from the scene lighting and geometric complexity.

Path guiding. The family of path guiding techniques, originating

from Lafortune and Willems [1995] and Jensen [1995], is closely

related to that of radiance caching in that they often learn an ap-

proximation of incident radiance that is amenable to importance

sampling. Recent incident-radiance models tend to be either para-

metric mixtures [Vorba et al. 2014] or probability trees [Müller et al.

2017], but (neural) normalizing flows are also possible [Müller et al.

2019]. While these techniques are highly successful in offline ren-

dering of mostly static scenes [Vorba et al. 2019], adapting them

to the constraints of animated real-time rendering is non-trivial

ongoing work [Dittebrandt et al. 2020]. Methods that use an explicit

model of the BRDF [Herholz et al. 2018, 2016] or the product in-

tegrand [Müller et al. 2019; Müller et al. 2020] are likely the most

promising to repurpose as radiance caches, as they yield a more

accurate scattered-radiance estimate than methods approximating

the incident radiance at the previous camera-path vertex.

Neural techniques. Neural networks are capable of approximating

various visual phenomena remarkably well, whether they operate

in screen space [Nalbach et al. 2017] or in world space, whether they

are pre-trained over multiple scenes [Hermosilla et al. 2019; Jiang

and Kainz 2021; Kallweit et al. 2017; Nalbach et al. 2017] or fit to

single scene [Keller and Dahm 2019; Mildenhall et al. 2020; Müller

et al. 2019; Müller et al. 2020; Ren et al. 2013]. The latter approaches

are most closely related to ours. Ren et al. [2013] propose to train a

set of local neural radiance caches, conditioned on the position of

a single point light source. While lighting can be changed dynam-

ically and area lighting can be approximated using a set of point

lights at the cost of multiple cache queries, geometry and materials

have to remain static as a consequence of the cost of the training

procedure. Our technique differs on two important aspects: (i) we

use a single neural radiance cache leveraging recently proposed

encodings [Müller et al. 2019; Vaswani et al. 2017] to adapt to local

scene variations, and (ii) we train our model online which allows

for fully dynamic scenes and readily accounts for all lighting in

the scene in a single query. Neural control variates [Müller et al.

2020] and NeRF [Mildenhall et al. 2020], developed in the context

of offline rendering, encompass a radiance cache that is parameter-

ized similarly. The key differences of our work are: (i) a network

architecture and implementation designed for a rendering budget

on the order of milliseconds instead of minutes, and (ii) integration

in a renderer using self-training, which has been connected with

Q-learning [Dahm and Keller 2018], to account for infinite bounces

of indirect illumination despite tracing paths of finite length.

3 NEURAL RADIANCE CACHING
Our goal is to cache radiance using one single neural network that

maps spatio-directional coordinates to radiance values and is trained

in real-time to support dynamic scenes. We opt for approximating

the scattered radiance as it is the most computationally expensive

part of the rendering equation [Kajiya 1986]. The scattered radiance

Ls(x,ω) :=
∫
S2

fs(x,ω,ωi)Li(x,ωi) | cosθi | dωi (1)

represents the radiative energy leaving point x in direction ω after

being scattered at x. For a given direction of incidence ωi, the in-

tegrand is the product of the bidirectional scattering distribution

function (BSDF) fs(x,ω,ωi), the incident radiance Li(x,ωi), and the

foreshortening term | cosθi |, where θi is the angle between ωi and

the surface normal at x. Our neural network approximates Ls by

the cached radiance L̂s.
In this section, we discuss the algorithmic choices for building

a neural radiance cache that are key to satisfy the design princi-

ples outlined in Section 1. Real-time performance is enabled by an

optimized fully fused network, which is discussed in Section 4.

3.1 Algorithm Overview
Rendering a single frame consists of computing pixel colors and

updating the neural radiance cache; see Figure 2 for an illustration.

First, we trace short rendering paths, one for each pixel, and

terminate them as soon as the approximation provided by the radi-

ance cache is deemed sufficiently accurate. We use the heuristic by

Bekaert et al. [2003], that was originally developed in the context of
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Fig. 2. For rendering, we trace short “rendering” paths (e.g. x0 · · · x2) and
terminate them into the neural radiance cache; queries of cached radiance
L̂s are highlighted by red arrows. To optimize the cache, we extend a small
subset of the rendering paths by a few vertices (called “training suffix”, e.g.
y2 · · · y4). We collect radiance estimates (blue arrows) to update the neural
radiance cache along the vertices of the longer training path, reusing the
initial path segment that was already traced for rendering. Furthermore,
the online training together with the termination of training paths into the
cache progressively increases the number of simulated light bounces.

photon density estimation, to only query the cache once the spread

of the path is sufficiently large to blur small inaccuracies of the cache

(more detail in Section 3.4). At each intermediate vertex, we use

next-event estimation to integrate light from emitters. To this end,

we use screen-space ReSTIR [Bitterli et al. 2020] at the primary ver-

tex and a LightBVH [Moreau et al. 2019], combined with the BSDF

via multiple importance sampling [Veach and Guibas 1995], at the

subsequent vertices. Truncating the path at the terminal vertex xk ,
we evaluate the neural radiance cache to approximate Ls(xk ,ωk ).

Second, to train the radiance cache, we extend a fraction (typically

under 3%) of the short rendering paths by a few vertices—a training
suffix. As before, we terminate these longer training paths once the

area spread of their suffix is sufficiently large; for that purpose we

consider the query vertex xk as a primary vertex (see Figure 5). In

the majority of cases, the suffix consists of one vertex. The radiance

estimates collected along all vertices of the longer training paths

are used as reference values for training the radiance cache.

Discussion. Terminating the paths into the radiance cache saves

computation and, importantly, replaces a one-sample estimate with

an approximation that aggregates samples from spatially and tem-

porally nearby locations. The variance is thus reduced, however,

the viability of caching for real-time applications is still conditioned

on how efficiently and quickly we update and query the cache.

3.2 Fast Adaptation of the Cache by Self-training
As in any data-driven approach, the quality of the approximation

depends on the accuracy of the target values Ls that the network
is trained on. The distinct challenge of rendering dynamic scenes

in real time requires to continuously adapt the neural radiance

cache according to the changing radiance field, for example, due to

moving lights or geometry. This means we neither have the luxury

of precomputing precise target values Ls, nor can we tolerate noisy

estimates that would slow down convergence.

Instead of estimating target values via Monte Carlo path trac-

ing [Müller et al. 2019; Müller et al. 2020], we leverage the neural

radiance cache itself by evaluating it at the terminal vertices of

the longer training paths. The collected radiance is transported to

the preceeding vertices, at each one generating a target value for

training the neural network. Updating the neural radiance cache

using its own values resembles the concept of Q-learning [Dahm

and Keller 2018; Keller and Dahm 2019].

The self-training approach has two distinct advantages over fully

path-traced estimates: it trades a large fraction of the undesired

noise for (potential) bias when estimating Ls. It also allows for

capturing global illumination as long as the training procedure is

iterated: the radiance learned by one training path is transported

using multiple other training paths in the next iteration. Hence,

each iteration increases the number of simulated light bounces.

This is reminiscent of progressive radiosity algorithms [Martin and

Einarsson 2010] that simulate multi-bounce diffuse transport by

iterating single-bounce radiative transfer.

However, self-training the neural radiance cache also has two

caveats: first, the last vertex of the training path may reach scene

locations that the radiance cache has not been trained for, which

may incur a larger approximation error. The second drawback is

that the iterated optimization may simulate only a subset of multi-

bounce illumination rather than all light transport. Specifically, only

the transport from emitters that can be reached by training paths

will be further bounced around, and only so, if tails of training paths

in subsequent frames land near the current optimization points (i.e.

y4 needs to be close to y2 or y3 in Figure 2). Both caveats can be

alleviated almost for free by making a small fractionu of the training

paths truly unbiased, thereby injecting correct source values to be

propagated by the self-training mechanism. We use u = 1/16, i.e.

every 16
th
training suffix is only terminated by Russian roulette.

3.3 Temporally Stable CacheQueries
When rendering dynamic content, for example changing camera

position or animated geometry, the neural radiance cache continu-

ously needs to adapt, forcing us to use a high learning-rate when

optimizing the network by gradient descent. In addition, we also

perform multiple (in our case 4) gradient descent steps per frame
1
,

which leads to even faster adaptation.

However, a side effect of such an aggressive optimization schedule

are temporal artifacts like flickering and oscillations across the ren-

dered frames—even when the scene and camera are static, because

there is noise in the estimated radiance targets.

We therefore propose to dampen such oscillations by averaging

the network weights produced by the optimization. More specif-

ically, we compute an exponential moving average (EMA) of the

network weights Wt produced by the t th gradient descent step,

which creates a second set of weightsW t that we use when eval-

uating the cache for rendering. The exponential moving average

reads

W t :=
1 − α

ηt
·Wt + α · ηt−1 ·W t−1 , where ηt := 1 − α t (2)

corrects the bias of the average for small t and α ∈ [0, 1] controls

the strength of exponential averaging. We use α = 0.99 for a good

trade-off between fast adaptation yet temporally stable evolution of

the weightsW t ; we illustrate the temporal stability in Figure 3.

1
Each step uses a disjoint random subset of the training data that was gathered while

rendering the frame to prevent the same data from being seen twice.
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Note that the averaging process does not feed back into the train-

ing loop;W t depends onWt , but not the other way around. Still,

recent work suggests that the EMA filtered weightsW t may be

closer to the optimum than any of the raw weightsWt produced by

the optimizer [Izmailov et al. 2018].

Indeed, Figure 4 shows that when the radiance cache is trained

from scratch, its evolution is gradual and quick at the same time.

Using the cache at the end of paths instead of visualizing it directly

filters its approximation error, converging to satisfactory quality in

as few as 8 frames (∼ 70 ms); see the supplementary video for more

results on animated content.

3.4 Path Termination
All paths are terminated according to a simple heuristic based on

the area-spread of path vertices, illustrated as cones in Figure 5;

we index the camera vertex as x0 and the primary vertex as x1.
Once the spread becomes large enough to blur away the small-scale

inaccuracies of our cache (c.f. Figure 12), we terminate the path.

Following Bekaert et al. [2003], the area spread along the subpath

x1 · · · xn can be cheaply approximated as the sum

a(x1 · · · xn ) =
©­«
n∑
i=2

√
∥xi−1 − xi ∥2

p(ωi | xi−1,ω) | cosθi |
ª®¬
2

, (3)

where p is the BSDF sampling PDF and θi is the angle between ωi

and the surface normal at xi .
To terminate a path, we compare the subpath spread a(x1 · · · xn )

to the spread at the primary vertex as viewed from the camera,

which can be approximated
2
as

a0 :=
∥x0 − x1∥2

4π cosθ1
. (4)

That is, we will terminate a path if a(x1 · · · xn ) > c · a0, where c
is a hyperparameter that trades variance (longer paths) for bias

and speed (shorter paths). We found c = 0.01 to yield satisfactory

results.

Lastly, if the path is selected to become a training path, the heuris-

tic will be used once again, this time to terminate the training suffix

when a(xn · · · xm ) > c · a0 is satisfied. The heuristic is illustrated in
Figure 5 for a training path, where the short rendering part of the

path ends at vertex n = 2 and the training suffix at n = 4.

3.5 Amortization in a Real-time Path Tracer
We target real-time applications, setting ourselves a 16.6 millisec-

onds rendering budget in order to achieve a framerate of 60 frames

per second. That budget includes the tracing of paths, shading at

every vertex, as well as querying and updating the cache. In practice,

this leaves just a few milliseconds to handle the cache overhead.

We not only tackle this using our proposed fully fused network,

described in Section 4, but also in the path tracer integration itself.

We interleave short rendering paths and long training paths by

tiling the viewport. Using a single random offset, we promote one

path per tile to be a long training path (see Figure 5), resulting in a

uniform sparse set of training paths in screen space. This approach

of merely prolonging a rendering path to obtain a training path

2
By assuming a spherical image plane and ignoring constant factors.

EMA weight α = 0.00 EMA weight α = 0.90 EMA weight α = 0.99

Z
e
r
o
D
a
y

Fig. 3. Temporal stability of online learning with three weight-averaging
strategies: no averaging (left) and an exponential moving average (EMA)
with weights 0.90 and 0.99. The false color images depict temporal stability
across 100 frames, measured as the symmetric mean absolute percentage
error (SMAPE) averaged over all consecutive pairs of frames; i.e. darker
means less variation across frames. To be more meaningful in print, the
scene and the camera have been fixed. Please see the accompanying video
to best assess the temporal stability.

Visualization at first non-specular vertex

Proposed use of the cache at the end of short paths

1 2 4 8 16 32 64 128 256 512 1024

Training frames

Fig. 4. From-scratch training of the neural radiance cache. We visualize
the cache after 1, 2, 4, ..., 1024 frames. Top: to illustrate its training behavior,
the radiance cache is visualized directly at the first non-specular vertex.
Already after the first 64 frames (∼ 0.5s) the overall colors are correct and
only subtle high-frequency artifacts remain. Bottom: using the cache as
proposed, the high-frequency artifacts are hidden behind path indirections
and the cache is usable starting from the ∼ 8th frame (i.e. after ∼ 70ms).
This confirms that the cache trains sufficiently fast for the online adaptation
to animated content; see the supplementary video for more results.
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Fig. 5. We terminate our short rendering paths into the neural radiance
cache once their scattering interactions blur the signal sufficiently well. To
this end, we compare the size of the footprint of the path a(x1x2) to the
size of the directly visible surface in the image plane a0. The longer training
paths are terminated by the same heuristic applied to the vertices of the
suffix, i.e. we compare a(x2x3x4) to a0.

greatly reduces the overhead, as computation is shared between

the two. This contrasts with caching techniques based on probe

volumes, which use a separate set of rays to update the cache that

do not contribute to the image itself.

Once the tracing is complete, we reconstruct the image by back-

propagating the cached radiance from the terminal vertex of each

short rendering path. For training paths, we track two values: the

aforementioned rendering radiance and the training radiance. For

every vertex along a training path, we store the training radiance

(along with the vertex information) in an array; it will be used as

the target to optimize the cache.

We shuffle all training records using a linear congruential genera-

tor and distribute them over s training batches of l training records

each. The shuffling ensures that the training batches are not corre-

lated with image regions. Each training batch is used to perform a

single optimization step of the cache. As we want to ensure a stable

work load, we use an adaptive tiling mechanism to match a target

training budget; we select s = 4 training batches and l = 16384

records per batch in practice, for a total of 65536 training records

per frame. We dynamically adjust the tile size at each frame based

on the number of training records generated during the image recon-

struction. Similar to other caching techniques, the cost of training is

decoupled from the image resolution, since we use a bounded num-

ber of training records. Lastly, we observe that training our neural

radiance cache amounts to a regression over many samples from

spatially and temporally nearby locations, i.e. a form of path-space

denoising. The variance is thus significantly reduced by replacing

one-sample radiance estimates with the cache approximation.

3.6 Input Encoding
Ren et al. [2013] showed that solely using the spatio-directional

coordinates (x,ω) of the scattered radiance as input to a neural

network does not allow it to represent radiance well. Therefore, the

input is augmented by additional parameters that correlate with

the scattered radiance: the surface normal n, the surface roughness
r , the diffuse reflectance α , and the specular reflectance β . Being
able to exploit such correlations, the neural approximation becomes

much more accurate.

It is easier for the network to identify these correlations when

they are (nearly) linear. This is already the case for the diffuse

Table 1. Parameters and their encoding, amounting to 62 dimensions:
freq denotes frequency encoding [Mildenhall et al. 2020], ob denotes one-
blob encoding [Müller et al. 2019], sph denotes a conversion to spherical
coordinates, normalized to the interval [0, 1]2, and id is the identity.

Parameter Symbol with Encoding

Position x ∈ R3 freq(x) ∈ R3×12

Scattered dir. ω ∈ S2 ob(sph(ω)) ∈ R2×4

Surface normal n(x) ∈ S2 ob(sph(n(x))) ∈ R2×4

Surface roughness r (x,ω) ∈ R ob

(
1 − e−r (x,ω)

)
∈ R4

Diffuse reflectance α(x,ω) ∈ R3 id(α(x,ω)) ∈ R3

Specular reflectance β(x,ω) ∈ R3 id(β(x,ω)) ∈ R3

and specular reflectances; we thus input them to the network as-

is. However, the quantities x, ω, n, and r have a highly non-linear

relation to the scattered radiance. For these quantities, a well-chosen

encoding to a higher-dimensional space can make the relation more

linear and thereby make the neural approximation more accurate.
3

The extra dimensions do not come for free, as they increase the

required memory traffic as well as the cost of the first layer of the

neural network. We thus aim at encoding the quantities x, ω, n, and
r using as few as possible extra dimensions while still profiting from

the linearization.

To this end, the one-blob encoding [Müller et al. 2019] works

well when the scale of the nonlinearities is about the same order of

magnitude as the size of the blobs. This is a good fit for ω, n, and r
as tiny variations in these parameters typically do not change the

scattered radiance much. We thus encode them using a very small

number (e.g. k = 4) of evenly spaced blobs.

However, tiny changes in the position x can cause large variation

in the scattered radiance, e.g. along shadow and geometric bound-

aries or in outdoor environments that are much larger than the view

frustum. One-blob encoding is therefore unsuitable for robustly en-

coding the position within just a few extra dimensions. Instead, we

adopt the frequency encoding from transformer networks [Vaswani

et al. 2017], introduced to radiance learning by Mildenhall et al.

[2020], that leverages a geometric hierarchy of periodic functions to

represent a high dynamic range of values in few encoded dimensions.

We use 12 sine functions, each with frequency 2
d ,d ∈ {0, . . . , 11}.

To save on dimensions, we found that omitting the cosine terms of

the original method does not compromise approximation quality.

In summary, the input of our neural network is a concatenation

of the following: the frequency-encoded position x, the one-blob
encoded parameters ω, n, and r , and the raw diffuse albedo α and

specular reflectance β ; see Table 1 for a detailed breakdown. This

results in a total of 62 input dimensions to the neural network,

which we pad to 64 for compatibility with the hardware matrix-

multiplication accelerator.We padwith a value of 1, which allows the

network to implicitly learn a bias term (the corresponding columns

of the first weight matrix) even though our architecture lacks explicit

biases.

3
This is analogous to the “kernel trick” that is often employed in machine learning to

make the data linearly separable [Theodoridis 2008].
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(a) Batched neural network evaluation
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Fig. 6. (a) Evaluating a multi-layer perceptron (MLP) for a large batch of inputs (e.g. N ≈ 2
21 for a 1920 × 1080 frame) amounts to alternating weight-matrix

multiplication and element-wise application of the activation function. (b) In our fully fused MLP, we parallelize this workload by partitioning the batch into
128 element wide chunks that are each processed by their own thread block. Since our MLP is narrow (M

hidden
= Min = 64 neurons wide), its weight matrices

fit into registers and the intermediate 64 × 128 neuron activations fit into shared memory. This is key to the superior performance of the fully fused approach.
(c) The matrix multiplication performed by each thread block transforms the i-th layer Hi into the pre-activated next layer H ′

i+1. It is diced into blocks
of 16 × 16 elements to match the size of our hardware-accelerated half-precision matrix multiplier (TensorCore). Each warp of the thread block computes
one 16 × 128 block-row of H ′

i+1 (e.g. the striped area) by first loading the corresponding 16 × 64 striped weights fromWi into registers and subsequently
multiplying them by all 64 × 16 block-columns of Hi . Thus, each thread block loads the weight matrix from global memory exactly once (the least possible
amount), making multiple passes only over Hi which, however, is located in fast shared memory.
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Fig. 7. Our fully fused neural network outperforms an equivalent XLA-
enabled TensorFlow (v2.5.0) implementation. Both implementations utilize
half precision floating point numbers and TensorCore hardware for matrix
multiplication. We compare the throughput of training (left) and inference
(right) for a 64 (solid line) and a 128 (dashed line) neurons wide multi-layer
perceptron. The relevant batch sizes for our goal of neural radiance caching
are small training batches (e.g. 214 elements) and large inference batches
(e.g. 221 elements for evaluating a 1920 × 1080 frame). For these batch sizes,
the speed-up over TensorFlow ranges from 5× to 10×.

4 FULLY FUSED NEURAL NETWORKS
We implemented our neural network from scratch in a GPU pro-

gramming language in order to take full advantage of the GPU

memory hierarchy. In Figure 7, we compare the performance of this

implementation to TensorFlow (v2.5.0) [Abadi et al. 2015], which

we outperform by almost an order of magnitude.

To understand where this dramatic speedup comes from, we ex-

amine the bottleneck of evaluating a fully connected neural network

like ours. The computational cost of such a neural network scales

quadratically with its width, whereas its memory traffic scales lin-
early. Modern GPUs have vastly larger computational throughput

than they havememory bandwidth, though, meaning that for narrow

neural networks like ours, the linear memory traffic is the bottle-

neck. The key to improving performance is thus to minimize traffic

to slow “global” memory (VRAM and high-level caches) and to fully

utilize fast on-chip memory (low-level caches, “shared” memory,

and registers).

Our fully fused approach does precisely this: we implement the

entire neural network as a single GPU kernel that is designed such

that the only slow global memory accesses are reading and writ-

ing the network inputs and outputs. Furthermore, implementing

the kernel from scratch as opposed to building it out of existing

frameworks allows us to specifically tailor the implementation to

the network architecture and the GPU that we use.

Figure 6 illustrates how the fully fused approach is mapped to

the memory hierarchy. Using CUDA terminology: a given batch of

input vectors is partitioned into block-column segments that are

processed by a single thread block each (Figure 6(b)). The thread

blocks independently evaluate the network by alternating between

weight-matrix multiplication and element-wise application of the

activation function. By making the thread blocks small enough

such that all intermediate neuron activations fit into on-chip shared

memory, traffic to slow global memory is minimized. This is the

key advantage of the fully fused approach and stands in contrast to

typical implementations of general matrix multiplication.

Within a matrix multiplication (Figure 6(c)), each warp of the

thread block computes the matrix product of a single block-row

(striped area). In our case, the striped weights inWi are few enough

to fit into the registers of the warp and can thus be re-used for

every block of H ′
i+1 that the warp computes, yielding an additional

performance gain. Furthermore, since each warp loads a distinct

block-row of the weight matrix, the entire thread block loads the

weight matrix from global memory exactly once, which cannot be

reduced further.
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Visualization of factored neural radiance cache at primary vertex

Radiance cache Radiance cache = Prediction × Reflectance

Direct prediction Factorization

Fig. 8. Reflectance factorization leads to more accurate textured colors and
lets the neural prediction focus on complementary detail such as glossy
highlights. Note that sharp texture detail is also present when predicting
the product, because the reflectance is input to the network in any case.

The only possible remaining reduction of global memory traffic

is thus to minimize the number of thread blocks by making them as

large as fits into shared memory. On our hardware (NVIDIA RTX

3090) and with our 64-neurons-wide network, this sweet-spot is met

when each thread block processes 128 elements of the batch. Each

thread block thus computes matrix products of a 64 × 64 weight

matrix with a 64 × 128 chunk of the data.

Training the fully fused neural network. For training, the forward
and backward passes admit the same matrix multiplication structure

as the previously discussed inference pass. However, they require

additional global-memory traffic, because intermediate activations

and their gradients must be written out for backpropagation. Fur-

thermore, additional matrix multiplications are necessary to turn

the results of backpropagation into the gradients of the weight ma-

trices. We compute these additional matrix multiplications using

the general matrix multiplication (GEMM) routines of the CUTLASS

template library (in split-k mode) as we were unable to produce a

faster implementation ourselves.

All these additional operations make training slower than infer-

ence by a factor of roughly 4×–5×; see Figure 7.

5 PRACTICAL CONSIDERATIONS
Architecture. Our fully fused neural network architecture (see

Figure 6) comprises of seven fully connected layers. The five hid-

den layers have 64 neurons each with ReLU activation functions.

The output layer reduces the 64 dimensions to three RGB values.

None of the layers has a bias vector, as biases did not result in any

measurable quality benefit and omitting them makes the fully fused

implementation simpler and more efficient. Note that the neural

network is shallow enough for vanishing gradients not to be a prob-

lem. Hence there is no need for residual layers using skip links to

help training, which we confirmed experimentally.
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quartic(x) := 15

16
(1 − x2)2 tri(x) := 2 |x mod 2 − 1| − 1

Fig. 9. To avoid expensive mathematical operations, we replace the Gauss-
ian kernel of the one-blob encoding by a quartic kernel and the sine function
in the frequency encoding by a triangle wave. With these replacements, the
cost per frame is reduced by 0.25ms with no visible loss of quality.

Reflectance factorization. To improve textured colors reproduc-

tion, wemultiply the network output by the sum of the diffuse albedo

and specular reflectance α(x,ω)+ β(x,ω). For Lambertian materials,

this amounts to irradiance factorization [Ward et al. 1988], and the

network is effectively tasked with learning irradiance as opposed

to reflected radiance. However, even in our highly non-Lambertian

scenes, the above factorization is helpful. The factorization is not
necessary to recover sharp detail—α(x,ω) and β(x,ω) are input to
the network in any case—but it helps recover colors while letting

the cache focus on complementary details; see Figure 8.

High-performance primitives for encoding. The one-blob and fre-

quency encodings rely on primitives that are computationally ex-

pensive: Gaussian kernels and trigonometric functions. We thus

replace the primitives with approximations that are far cheaper to

evaluate. Specifically, we replace the Gaussian with a quartic kernel

and the sine function with a triangle wave as illustrated in Figure 9,

reducing the cost per frame by 0.25ms with no visible loss of quality.

Relative loss. To facilitate effective training, we use the relative
L2

loss that admits unbiased gradient estimates when the train-

ing signal—the reflected radiance Ls(x,ω)—is noisy [Lehtinen et al.

2018]. The loss is normalized by the neural prediction:

L2
(
Ls(x,ω), L̂s(x,ω;Wt )

)
:=

(
Ls(x,ω) − L̂s(x,ω;Wt )

)2
sg

(
L̂s(x,ω;Wt )

)2
+ ϵ

, (5)

where ϵ = 0.01 and sg( · ) denotes that its argument is treated as

a constant in the optimization, i.e. no gradient is propagated back.

Furthermore, for spectral values of Ls(x,ω), we normalize the loss of

each color channel by the squared luminance across the spectrum.

Optimizer. The choice of optimizer is crucial to effectively lever-

age the little training data we have per frame. To this end, we com-

pared multiple first-order optimizers, i.e. stochastic gradient descent

(SGD), Adam [Kingma and Ba 2014], and Novograd [Ginsburg et al.

2019]) and found that Adam converges in the fewest iterations while

having an overhead of practically zero.

We also investigated a second order optimizer, Shampoo [Anil

et al. 2020; Gupta et al. 2018], which converges with slightly fewer

iterations than Adam. However, the 0.3 milliseconds per-frame

overhead of our optimized implementation did not justify its benefit

in our experiments. We thus use Adam in all results.
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Fig. 10. We demonstrate the benefit of our neural radiance cache (NRC) in 1 spp real-time renderings with varied material and lighting complexity. From
left to right: our baseline is unbiased path tracing with Russian roulette and next-event estimation driven by a light BVH [Moreau et al. 2019]. Then, we
add spatiotemporal reservoir resampling (ReSTIR) [Bitterli et al. 2020] for low-variance direct and NRC for low-variance indirect illumination. Individually,
these complementary techniques excel in their respective domains (e.g. ReSTIR in the directly lit Bistro and NRC in the glossy Zero Day scene), but their
combination unlocks the biggest improvement. Together, the three techniques reduce the mean relative squared error (MRSE) of path tracing by 1–2 orders
of magnitude while incurring a comparatively little performance loss thanks to the drastic path shortening of NRC. In all scenes, the combined technique
exceeds 60 frames per second at a resolution of 1920 × 1080. We also report the perceptually based FLIP metric that is more robust to outliers (“fireflies”).
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Table 2. Time to converge to equal MRSE.

Scene Method Frames Time MRSE Speedup

Attic
PT+ReSTIR 7 92.5 ms 2.739 6.6×

PT+ReSTIR+NRC 1 14.0 ms 2.727

Bistro
PT+ReSTIR 8 110.7 ms 1.498 7.6×

PT+ReSTIR+NRC 1 14.6 ms 1.407

Classroom
PT+ReSTIR 145 2625 ms 5.882 172.7×

PT+ReSTIR+NRC 1 15.2 ms 5.847

Living Room
PT+ReSTIR 53 431.5 ms 1.379 49.6×

PT+ReSTIR+NRC 1 8.7 ms 1.376

Pink Room
PT+ReSTIR 10 66.9 ms 0.769 8.4×

PT+ReSTIR+NRC 1 8.0 ms 0.765

Zero Day
PT+ReSTIR 5 69.4 ms 3.799 6.1×

PT+ReSTIR+NRC 1 11.3 ms 3.430

Average
PT+ReSTIR 16.6 154.1 ms 2.037 13.6×

PT+ReSTIR+NRC 1 11.3 ms 1.941

6 RESULTS AND DISCUSSION
We implemented all components of our neural radiance cache in

CUDA, i.e. input encoding, the fully fused network, and the opti-

mizer, the source code of which we release publically [Müller 2021].

The radiance cache is integrated into a path tracer implemented

in Direct3D 12 using the Falcor rendering framework [Benty et al.

2020] with which we generated all results in this paper.

All images were rendered at a resolution of 1920 × 1080 on a

high-end desktop machine (i9 9900k and RTX 3090). For each image,

we report the mean relative squared error (MRSE) [Rousselle et al.

2011] or its decomposition into relative bias (rBias) and variance

(rVar) to aid the reader in gauging the improved Monte Carlo effi-

ciency. When applicable, we also list the perceptually based FLIP

metric [Andersson et al. 2020] that is more robust to outliers (“fire-

flies”). Our reference images were created using ReSTIR-enabled
path tracing to ensure that we only measure the bias caused by

radiance caching and not that of ReSTIR.

Real-time rendering. In Figure 10, we utilize neural radiance caching
(NRC) to reduce indirect illumination noise of a path tracer. By com-

bining NRC with complementary direct-lighting techniques, we get

global illumination with both low noise and little bias in real-time.

Our baseline is an unbiased path tracer with Russian roulette and

next-event estimation driven by a light BVH [Moreau et al. 2019],

to which we add screen-space spatiotemporal reservoir resampling

(ReSTIR) [Bitterli et al. 2020]. While this algorithm has low vari-

ance in its direct lighting estimates (PT+ReSTIR column), it suffers

from noisy estimates of indirect lighting, which can be remedied

by terminating paths into our cache (PT+ReSTIR+NRC column).

Shortening the paths in this way not only results in lower variance

but sometimes also in higher framerates due to the low overhead of

querying and training the fully fused network.

Compared with path tracing, the combination of ReSTIR and

NRC reduces the MRSE by 1–2 orders of magnitude while having

a comparatively small impact on performance. In all scenes, the

combined technique exceeds 60 frames per second.

We measure our speedup in Table 2 by letting the baseline con-

verge to equal MRSE as a single rendered frame of our method. The

average speedup across the test scenes is 13.6×.

PT+ReSTIR+NRC at 256 spp PT+ReSTIR

no Self-training Self-training Reference

Z
e
r
o
D
a
y

rBias
2
: 0.096 rBias

2
: 0.006

L
i
v
i
n
g
R
o
o
m

rBias
2
: 0.118 rBias

2
: 0.002

P
i
n
k
R
o
o
m

rBias
2
: 0.137 rBias

2
: 0.002

Fig. 11. Self-training enables efficient learning of indirect radiance that is
not captured by short paths: compare the left and middle images, both of
which trace paths of the same length (including the sparse set of unbiased
training paths described in Section 5). On the right, we provide a reference
image obtained by tracing paths that are truncated with Russian roulette.

Self-training. We compare the performance of self-training to

training relying on pure path-tracing. Terminating training paths

with our termination heuristic, we set the tail contribution either

to black (path-traced training) or to the radiance prediction at the

last vertex (self-training). As shown in Figure 11, the self-trained

solution accurately captures multi-bounce light transport. The com-

putational overhead of self-training amounts to the cost of querying

the radiance cache one additional time for each of the few training

paths, which amounts roughly to a 1% overall overhead—a small

amount compared with the cost that is saved by not having to trace

longer paths to learn global illumination.

Quality of the cache. In Figure 12, we study the quality of the neu-

ral radiance cache by visualizing it at the first non-specular vertex.

By being agnostic to the materials and geometry of the underlying

scenes, the cache handles a wide range of visual phenomena. For

example, it handles complex glossy transport in the Zero Day scene,

shadow detail at a distance in the Bistro scene, and thin geometry

without light leakage, such as the tarp in the Attic scene. The cache

also performs well at capturing the overall color of almost every

region in each scene.

The limitations of the cache are twofold. First, the cache does not

capture sharp detail very well if that detail is absent from the inputs

to the network (e.g. a sharp contact shadow or caustic). And second,

the cache exhibits subtle axis-aligned stripes that are a byproduct

of the frequency encoding [Mildenhall et al. 2020]. Since we rely on
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Fig. 12. Converged renderings when querying the cache at the first non-specular vertex, or according to the path termination heuristic. We measure accuracy
using the objective relative square bias metric, and the perceptual FLIP metric [Andersson et al. 2020]. The Zero Day scene features complex area lighting,
glossy materials, and high-order indirect illumination due to the high albedo of surfaces. The Bistro scene features small geometry and shadow details in a
relatively large environment, highlighting the local adaptation afforded by the encoding of the network inputs. The Attic scene is an interesting test case
for light leakage as it features a fairly high geometric complexity, including thin elements such as the tarp. In all three scenes, employing the termination
heuristic leads to a high quality result that closely resembles the reference image. In particular, the heuristic recovers contact shadows and local ambient
occlusion, whereas other real-time caching techniques typically require an additional screen-space ambient occlusion (SSAO) pass to recover these details.

the frequency encoding to handle a spatial detail at scale (e.g. the

accurate far-away shadows in the Bistro scene), we cannot simply

switch to a different encoding. All other encodings that we tried

either exhibited worse artifacts or did not scale well.

Thus, to mask away the remaining cache inaccuracies, we defer its

evaluation according to the termination heuristic from Section 3.4.

Since the heuristic is based on the path footprint, the cache artifacts

are observed through rough reflections and therefore averaged out.

The heuristic also leads to fewer cache queries in concavities, where

contact-shadow inaccuracies could become an issue. The insets in

Figure 12 confirm this observation: combined with the termination

heuristic, the cache produces images that are difficult to distinguish

from the ground truth, both visually and numerically.

Comparison with dynamic diffuse global illumination (DDGI). In
Figure 13 we compare the neural cache to DDGI [Majercik et al.

2019]. DDGI is a modern extension of irradiance probes, relying

on modulation by the surface normal and albedo to approximate

the scattered radiance. As a consequence, DDGI works best on

Lambertian materials, which is why we show results using both a

Lambertian diffuse BSDF model as well as the more physically based

Frostbite model [Lagarde and de Rousiers 2014] that our scenes were

modeled with.

DDGI makes an aggressive trade-off for performance and low

noise: paths are terminated into the irradiance probes at their first
diffuse interaction (as opposed to glossy or specular), which is fre-

quently the primary vertex. Consequently, DDGI is on one hand

very performant (paths are short) and has little noise, but on the

other hand lacks ambient occlusion and can expose visible bias (e.g.

in the Pink Room) due to its limited spatial resolution.

With NRC, we make the opposite trade-off. We minimize bias

at the cost of slightly reduced performance and (sometimes much)

more noise. In contrast to DDGI, our neural representation makes

no assumptions about the underlying material model, and our path

termination criterion helps to avoid the remaining inaccuracies of

NRC while also recovering ambient occlusion. The larger cost of

our model could thus be offset by the cost of the separate ambient

occlusion pass that DDGI requires.
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Fig. 13. Comparison of NRC with DDGI under challenging indirect illumination. Both methods use ReSTIR for direct illumination. Since DDGI caches
radiance as an extension of irradiance probes, its implementation assumes a Lambertian diffuse BRDF model and recovers detail through surface normal
and albedo modulation. As our scenes were modeled using the Frostbite model [Lagarde and de Rousiers 2014], we show results with both the Frostbite
(left) and the Lambertian (right) model. DDGI performs at its best on the Lambertian material that it was designed for, whereas NRC—being agnostic to the
BSDF—performs similarly in all situations. For each method, we show results at 1spp (left trapezoid) and 1024spp (converged, right trapezoid) to allow for the
visual inspection of the bias-variance trade-off. We also report relative bias (rBias) and variance (rVar). DDGI achieves the least variance and runs fastest at the
cost of sometimes incurring strong bias, e.g. around problematic geometry in the Pink Room. NRC has much lower bias, however incurring a moderately
higher variance and cost. Note that contact shadows and ambient occlusion are implicitly built into NRC via the path termination heuristic, whereas DDGI
lacks these visual features, necessitating an additional render pass in practice.

Table 3. Breakdown of rendering cost by component.

Scene Method Trace & shade Query Training

Attic

PT+ReSTIR 12.96 ms — —

PT+ReSTIR+DDGI 11.56 ms 0.64 ms 1.78 ms

PT+ReSTIR+NRC 10.88 ms 1.66 ms 1.12 ms

Bistro

PT+ReSTIR 13.75 ms — —

PT+ReSTIR+DDGI 12.71 ms 0.65 ms 1.68 ms

PT+ReSTIR+NRC 11.96 ms 1.38 ms 1.11 ms

Classroom

PT+ReSTIR 18.06 ms — —

PT+ReSTIR+DDGI 12.93 ms 0.59 ms 1.65 ms

PT+ReSTIR+NRC 12.28 ms 1.70 ms 1.11 ms

Living Room

PT+ReSTIR 8.32 ms — —

PT+ReSTIR+DDGI 5.68 ms 0.52 ms 0.99 ms

PT+ReSTIR+NRC 5.82 ms 1.85 ms 1.11 ms

Pink Room

PT+ReSTIR 6.73 ms — —

PT+ReSTIR+DDGI 5.56 ms 0.52 ms 0.89 ms

PT+ReSTIR+NRC 5.36 ms 1.54 ms 1.12 ms

Zero Day

PT+ReSTIR 13.89 ms — —

PT+ReSTIR+DDGI 8.34 ms 0.54 ms 1.21 ms

PT+ReSTIR+NRC 8.67 ms 1.41 ms 1.09 ms

Average

PT+ReSTIR 12.29 ms — —

PT+ReSTIR+DDGI 9.46 ms 0.58 ms 1.37 ms

PT+ReSTIR+NRC 9.16 ms 1.59 ms 1.11 ms

Performance breakdown. In Table 3, we analyze the time spent in

DDGI and NRC in more detail. We break down the rendering cost

into (i) path tracing & shading, (ii) querying the cache/DDGI, and

(iii) training the cache/DDGI.

Compared to the PT+ReSTIR baseline, the low path-tracing cost

of DDGI and NRC arises from tracing fewer rays: in addition to

Russian roulette, DDGI terminates its paths when a diffuse lobe is

sampled, and NRC terminates each path according to its footprint.

On average, both methods reduce the cost of path tracing by a

similar amount of roughly 2.8 ms per frame (25%). However, this

improvement is partially offset by the overhead of querying and

training or updating the respective caches.

As expected, querying DDGI is faster than querying our neural

network. However, given the reputation of neural networks to be

expensive, the difference is smaller than what might be expected:

A full-frame DDGI query costs on average 0.58 ms, whereas the

neural radiance cache costs 1.59 ms. Both methods are thus well

within reasonable cost for real-time settings.
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Most interestingly, training the neural radiance cache is cheaper
than training the DDGI volume (1.11 ms vs. 1.37 ms on average).

This has two reasons. First, NRC is very data efficient, using only

2
16 = 65536 training records per frame. On the other hand, DDGI in

our 16× 16× 16 probe-grid configuration traces 16
3 · 256 = 1048576

update rays per frame—more than 10 times as many as NRC. Second,

the few training paths that are traced for NRC share their first

couple of vertices with the paths that need to be traced for rendering

anyway, further saving cost.

7 DISCUSSION AND FUTURE WORK
Precomputation. While we do not perform any precomputation,

it could be incorporated by e.g. pre-training a good initial state of

the neural network or by utilizing a low-overhead meta-learning

technique [Hospedales et al. 2020]. In our design, we consider pre-

computation as strictly optional and merely to enhance the perfor-

mance when possible. In fact, as the neural radiance cache rapidly

learns the current situation (8 frames are sufficient, see Figure 4),

precomputation can be only of limited benefit. Still, it is of interest

to explore the utility of static sets of neural network weights and

to determine the bounds of the domain of validity of a fixed set of

neural network weights.

Cache artifacts. While we were able to suppress high-frequency

temporal flickering using an exponential moving average over the

optimized network weights, subtle low-frequency scintillation re-

mains. Additionally, the frequency encoding causes distracting axis-

aligned oscillations throughout space. These artifacts are impercep-

tible when using the neural radiance cache at non-primary path

vertices, but in some use cases (e.g. when noise is not an option),

using the cache at the primary vertex would be desirable. To this

end future work is needed to stabilize the prediction in a visually

pleasing manner.

Additional network inputs. Input encodings alone are not suffi-

cient to learn a detailed, high-frequency representation of features

in the scattered radiance that correlate poorly with all of the net-

work inputs. Examples of such features are shadows and caustics,

which are unrelated to the local surface attributes that we can easily

pass to the network. Shadows and caustics are therefore learned at

a much slower rate—or not at all, if the network is too small or the

radiance estimates are too noisy. It is thus very interesting to think

about additional, simple-to-compute network inputs that correlate

well with such features.

Offline rendering. While our neural cache design focuses on real-

time rendering, we believe its use of self-training would be beneficial

in offline scenarios. Indeed, it allows to capture high-order indirect

illumination without the costly tracing and shading of long paths;

this could be particularly useful to tackle path-length limitations of

batch rendering [Burley et al. 2018].

Volumes. We note that our neural cache parameterization is not

tied to a surface representation and can thus also be used in volumet-

ric rendering. A straightforward implementation yields promising

results (see Figure 14), but an in-depth investigation needs to be

carried out.

Path tracing + NRC (Ours) Reference

Path tracing + NRC (Ours) Reference

14.6 / 116 fps 2.62 / 125 fps

Fig. 14. Neural radiance caching also works in volumetric rendering. We
render at 1 spp and report MRSE (left number) and frames per second.
Illumination enters the room through a narrow slit in the ceiling and the
volume has an isotropic phase function. There is one single neural radiance
cache for the scene. For volume queries, undefined parameters (surface
roughness, normal, albedo, and specular coefficients) are simply set to
default constants.

Path guiding. The main source of noise in our results is the indi-

rect use of the cache. While the indirection results in decreased bias,

it also leads to increased variance due to the (hemi-)spherical sam-

pling, even though the cache approximation itself is noise-free. One

could consider bringing neural importance sampling [Müller et al.

2019] to real-time applications; as with our neural radiance cache,

the cost appears prohibitive at first, yet applying similar principles

may prove successful.

Improved path termination. More accurate approximations of the

anisotropic area spreads, such as covariance tracing [Belcour et al.

2013] or bundle coherence [Meng et al. 2015], could be used. While

we did not encounter specific failure modes of the isotropic approx-

imation of Bekaert et al., scenes with strong anisotropic lighting

effects would likely benefit from the aforementioned methods.

An additional challenge that goes beyond the choice of area-

spread approximation is the lack of path termination in long, branch-

ing, specular chains of interactions. Consequently, our cache cur-

rently provides little benefit when transport is dominated by dielec-

tric materials such as glass, as seen in Figure 15. An improvement of

the termination heuristic in such cases, as well as a more accurate

cache to resolve sharp specular details, is of high interest.
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Path tracing + ReSTIR + NRC (Ours) Reference

Path tracing + ReSTIR + NRC (Ours) Reference

2.79 / 192 ms 2.45 / 320 ms 2.10 / 379 ms

Fig. 15. 32 spp rendering of the Bistro scene, of which we report MRSE (left
number) and render time. The improvement by neural radiance caching is
marginal, because it does not address complex, branching specular transport.
To alleviate this, we believe that a combination with path guiding as well as
an improved path termination criterion should be investigated in the future.

Denoising. Our neural radiance cache could be considered a path-

space denoiser, as it effectively performs a regression over spatio-

temporal samples to produce noise-free approximations. In Fig-

ure 16, we demonstrate that this path-space denoising complements
existing screen-space techniques. This preliminary experiment em-

ployed an off-the-shelf denoiser that was trained on data not rep-

resentative of our method, so we expect a tighter coupling of our

cache and the denoiser to offer potential for further improvements.

8 CONCLUSION
We have introduced a real-time neural radiance caching technique

for path-traced global illumination. It can handle dynamic content

while providing predictable performance and resource consumption,

which is enabled by our fully fused neural networks that achieve gen-
eralization via online adaptation. While the necessary performance

requires a lot of engineering, robustness comes as a collateral. The

resulting high rendering quality makes up for the cost of the neural

radiance cache, and could be further improved through orthogonal

variance reduction techniques such as by path guiding.

The neural radiance cache is a rather different approach to real-

time rendering than previous techniques. It could be characterized

as wasteful in terms of compute—some neurons have little impact

on the output, yet their contribution is still evaluated. Competing

techniques with sophisticated data structures could be characterized

as wasteful in terms of memory—the memory is never used in its

entirety as queries access only small (random) neighborhoods.

Denoised PT + ReSTIR + NRC (Ours) Reference

Denoised PT + ReSTIR + NRC (Ours) Reference

0.0440 / 59 fps 0.0268 / 46 fps 0.0105 / 45 fps

Fig. 16. The Living Room scene from the teaser image at 1 spp, passed
through a deep-learning based real-time denoiser [Hasselgren et al. 2020].
Despite being trained on datasets with noise characteristics much differ-
ent from our algorithm, the denoiser produces the cleanest results on it,
achieving the lowest relative squared bias (left number). Even with denoising
enabled, the framerate of our method stays well above 30.

The neural radiance cache employs fixed function hardware (the

GPU tensor cores), and heavily relies on cheap computation, instead

of costly memory accesses. This efficiency is reflected in the timings

of Table 3, where our neural approach is only twice as expensive

as irradiance probes, despite requiring a comparatively massive

amount of compute (both implementations are reasonably well

optimized). We posit this compute efficiency is the key ingredient

of the neural cache robustness. This paradigm—cheap compute—

appears to be worth investigating [Dally et al. 2020], and we hope

it inspires further experiments in applications where compute is

typically considered a precious commodity.
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