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10 “Practical Path Guiding” in Production
THOMAS MULLER, NVIDIAS

Path Tracing + extended PPG

Figure 11: The “Practical Path Guiding” algorithm with our extensions reduces noise of indirect illumi-
nation in a scene lit and rendered with production assets. ©Walt Disney Animation Studios

101 Introduction

What is a “Practical” Path-Guiding Algorithm?  One of the main selling points of path guiding
is its ability to simulate complex light transport using a simple, low-overhead, unidirectional algorithm.
This is very benefitial for production environments, because unidirectional tracing is preferred over the
bidirectional methods that are typically required to simulate similar levels of complexity. However, pro-
duction rendering does not always need the ability to handle complicated illumination. Many scenes
encountered in production actually have quite simple light transport—in part because artists are accus-
tomed to coping with the limitations of unidirectional tracing—which challenges the practicality of path
guiding: a truly practical production-path-guiding algorithm must not only robustly handle difficult illu-
mination, but it must also remain performant under simple illumination without introducing additional
noise.

How Practical is “Practical Path Guiding”? The “Practical Path Guiding” (PPG) algorithm
[Miiller et al., 2017] was conceived with the goal of addressing several formerly existing practicality is-
sues. It succeeded on some fronts, such as eliminating an expensive precomputation by instead learning
to guide on-line during rendering from unidirectional camera paths (concurrently with Dahm and Keller
[2018]), but on other fronts PPG was still limited: for example, its spatio-directional data structure—the
SD-tree—had trouble adapting to local, high-frequency illumination, the algorithm discarded up to half
of the total number of samples, and PPG blindly performed incident-radiance guiding everywhere, even
in situations where this did not make sense.

Although these limitations did not prevent PPG from performing well under difficult illumination,
they made its performance worse than that of unguided path tracing in simpler settings. Because of this,
PPG clearly needed more work.

§The presented work was conducted while the author was employed at ETH Ziirich and Disney Research.
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Making “Practical Path Guiding” More Practical. We came up with three extensions to the
original PPG algorithm that address some of the aforementioned limitations. These extensions are

1. an inverse-variance-weighted sample combination scheme that uses most samples as opposed to
discarding up to half of them,

2. spatio-directional filtering for improving the quality and robustness of the SD-tree, and

3. on-line learning of the selection probability between guiding and BSDF sampling to avoid intro-
ducing extra noise in situations where incident-radiance guiding is suboptimal.

While there is still additional room for improvement—we do not outperform unguided path tracing in
all situations—our extensions helped in making PPG a useful tool for movie production within Disney’s
Hyperion renderer [Burley et al., 2018].

In the following, we will briefly describe the original PPG algorithm and then introduce each of our
extensions in detail. After that, we will discuss a number of subtle but important implementation details
and conclude by stating remaining issues and open problems.

10.2 The PPG Algorithm

The ultimate goal of path guiding is to importance sample the scattering integral

Ls(x, o) :/Li(x, wi) fs(X, wi, w,) cos y; dw; , 3)
S

where L; is the spatio-directional incident radiance, f; is the BSDE, and cos y; is the foreshortening term.
The PPG algorithm learns an approximation of incident radiance, denoted L;, and subsequently samples
w; proportional to this approximation. Since this approach neglects learning the BSDF and the fore-
shortening term, it is paramount to combine it with BSDF sampling via multiple importance sampling
(MIS) [Veach and Guibas, 1995] to attain low variance.

At PPG’s core is an iterative learning scheme: the rendering process is split into M distinct passes,
called “iterations”, each learning a new, more powerful incident-radiance approximation L while being
guided by the approximation that was learned in the preceeding iteration if_l. This scheme not only
allows guiding early on in the rendering process—as soon as the first iteration finishes—but it also avoids
an expensive precomputation that would stand in the way of fast artist workflows.

10.21 The SD-tree for Storing Incident Radiance

PPG approximates incident radiance as a piecewise-constant function with adaptive resolution that is
represented by a spatio-directional tree (SD-tree; see Figure 12). The SD-tree has an upper part—a binary
tree that subdivides the spatial domain—and a lower part—a quadtree that subdivides the directional
domain. This split into two parts captures the notion that the spatial and directional domain are used in
fundamentally different ways for guiding: given a position in space the goal is to sample a direction. In
other words, the guiding probability distribution is conditioned on space and normalized across directions.

Recording Radiance. During path tracing, the current SD-tree L is populated with radiance esti-
mates from paths that are guided by I:f_l as follows. Whenever a path is completed (e.g. via next-event
estimation), the radiance arriving at each of its vertices v is recorded in the SD-tree leaf that contains the
vertex position x, and direction w,. This amounts to nearest-neighbor filtering of the samples as they
are splatted into the tree. One of our extensions (Section 10.4) replaces this nearest-neighbor filter with
a more sophisticated volume-overlap filter that significantly improves the approximation quality of the
SD-tree.
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(a) Spatial binary tree (b) Directional quadtree

cos O

Figure 12: The SD-tree subdivides space using an adaptive binary tree (a) that alternates between split-
ting the x, y, and z axes in half. Each leaf of the spatial tree contains a quadtree (b), which approximates
the incident radiance as an adaptively refined piecewise-constant function in cylindrical world-space co-
ordinates (cos 0, ¢) with cos § = w® and ¢ = atan2(w”, w*). Ilustration from Miiller et al. [2017] with
additional labels.

Sampling. When using the SD-tree from the previous iteration I:f_l for importance sampling of w;
at an intersected location x, its spatial component is traversed to the leaf containing x; then the quadtree
contained in the leaf is sampled using hierarchical sample warping [McCool and Harwood, 1997]. We
provide pseudocode for sampling and for evaluating the corresponding PDF in Algorithm 2.

As mentioned before, to achieve low variance it is essential to combine SD-tree sampling with BSDF
sampling via MIS: PPG probabilistically selects either SD-tree or BSDF sampling with a fixed selection
probability of 50%. To reduce variance even further, in Section 10.5, we replace the 50% probability
with a spatially varying value that is optimized jointly with the SD-tree during rendering based on the
optimization of Miiller et al. [2018].

Subdivision. At the end of each iteration, the newly populated SD-tree L¥ is used to determine the
subdivision of the next SD-tree I:f“ in such a way that all spatial leaf nodes encounter a roughly equal
number of path vertices during rendering, and such that all directional leaf nodes of a given quadtree
contain roughly the same amount of flux. We omit additional details of this subdivision process, because
they are not relevant for the remainder of the text; we refer to Miiller et al. [2017] and our public imple-
mentation for more details.

10.2.2 lterative Learning and Rendering

The rendering algorithm is divided into M iterations, each of which produces an image I and an SD-tree
LX. Since the early iterations are guided only by coarse, inaccurate SD-trees, they typically result in much
noisier images than the later iterations. Naively averaging the images produced by each iteration could
thus lead to more noise in the final image than simply discarding the images from early iterations. This
motivates PPG’s iteration scheme: rather than allocating an equal number of samples to each iteration,
PPG doubles the number of samples of each iteration. The total number of samples is thus N = 1 + 2 +
oo 2M71 = 2M 1 which is approximately twice the number of samples of the final iteration. The

SIGGRAPH 2019 Course Notes: Path Guiding in Production Page 39/79



1

(= S, IR SV

N

10

12
13

PaTtH GUIDING IN PRODUCTION

Algorithm 2: Sampling and PDF evaluation of the directional quadtree.

function sampleQuadtree(node)
if isLeaf(node) then
‘ return cylindricalToDirection(uniformRandomPositionIn(node))
else
childNode <— sampleChildByEnergy(node)
return sampleQuadtree(childNode)

unction pdfQuadtree(node, w;)
if isLeaf(node) then
| return 1/47
else
childNode < getChild(node, directionToCylindrical(w;))
B+ 4 - getFlux(childNode) / getFlux(node)
return 3 - pdfQuadtree(childNode, w;)

—

algorithm then discards the images produced by all but the final iteration, preventing initial high-variance
samples from increasing overall noise while limiting the “wasted” computation to at most half of the total
sample count.’

While this scheme increases robustness in the worst cases, it is clearly undesirable to throw away
half of the computation when the initial iterations already resulted in small variance. Miiller et al. [2017]
address this problem by adaptively assigning a larger proportion of samples to the final iteration, thereby
discarding a smaller proportion, but the heuristic they use for this purpose is brittle in practice. In the
next section, we explain an alterative: a principled weighting scheme for combining almost all samples in
a robust manner.

10.3 Extension 1. Inverse-Variance-Weighted Sample Combination

Our first extension allows robustly combining the majority of samples by using an inverse-variance-based
weighting scheme that acts on the images I', I, . .., I produced in each iteration.

Theoretically Optimal Sample Combination. Because the images I', I?, . .., I™ are indepen-
dent random variables, the optimal per-pixel combination weights—i.e. those that result in the least com-
bined variance—are proportional to the inverse pixel variance [Graybill and Deal, 1959]

) M
I(p) = m ; w (p)I*(p) , (4)
Wh(p) — 1

where I(p) is the combined pixel value of pixel p.

Robust Sample Combination. Unfortunately, it is unrealistic to assume accurate knowledge of
the variance of each individual pixel, which makes the aforementioned optimal scheme difficult to apply.
While it is possible to estimate the pixel variance from the samples themselves, such estimates often are
highly inaccurate and would therefore lead to suboptimal weights if they were used. But even worse:
estimating the variance from the samples introduces correlation between the image I* and the variance-
estimate-based weights w*(p), ultimately leading to bias.

We want to reduce this bias and increase stability while retaining the core idea behind the inverse-
variance sample combination. To this end, we propose to average the per-pixel variance estimates over

*The algorithm can also handle non-power-of-two sample counts by lengthening the last iteration.
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Figure 13: Combining the images produced by each iteration weighted by their mean pixel variance
reduces the number of “wasted” samples and thereby slightly subdues noise. We quantify the noise as
mean absolute percentage error averaged over each image.

the image plane

W= W), (6)
p

leading to the less biased but also less optimal whole-image weighting scheme

1 _

In our experiments, we were unable to actually observe any bias using this scheme, both visually and
numerically. Furthermore, the resulting images consistently had less noise compared to images produced
by the original PPG algorithm; we show two examples in Figure 13.

Importantly, the proposed weighting scheme is consistent. As rendering progresses, the variance esti-
mate is built using an increasing number of samples, approaching the true variance of the pixel value. This
higher accuracy of the variance estimate leads to vanishing correlation between the weights and the pixel
values—because the true variance does not depend on any specific samples—and thereby to vanishing
bias.

Lastly, to further improve robustness, we only combine the last 4 images. While this amounts to
always discarding slightly fewer than the first 6.25% of the samples, these initial samples are the noisiest
and can—in the most difficult cases—otherwise cause unstable weights.

10.4 Extension 2: Spatio-directional Splatting into the SD-Tree

While testing the SD-tree on a large number of scenes, we observed distracting artifacts under spatio-
directionally narrow illumination. In Figure 14, we created a contrived situation that demonstrates the
problem: we render a CorRNELL Box that is illuminated by a tiny quad light with disabled next-event
estimation. Although PPG dramatically improves overall variance over an unguided path tracer (left),
residual noise manifests non-uniformly along the spatial structure of the SD-tree (middle).
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Path Tracing without NEE + spatio-directional filtering

Figure 14: Improved handling of narrow illumination by spatio-directional filtering of radiance estimates
that are splatted into the SD-tree. We illustrate a contrived situation: a small light source that is not sam-
pled with next-event estimation (NEE). Although PPG (middle) dramatically improves overall variance
compared to an unguided path tracer (left), residual noise is distributed non-uniformly along the spatial
structure of the SD-tree, which is visually unpleasing. Spatio-directional filtering (right) addresses the
structured noise by distributing it evenly across the scene and at the same time reducing it overall.

These artifacts are primarily caused by three problems of the SD-tree: first, the spatial subdivision
scheme assumes that splitting a node in half causes the newly created nodes to receive a roughly equal
number of samples, which is not the case when path vertices are distributed anisotropically, e.g. along geo-
metric edges. Second, even if the path vertices were evenly distributed across spatial leaf nodes, their sam-
ple variance is disregarded by the algorithm. And lastly, during path tracing, incident radiance estimates
at path vertices are recorded within their nearest spatial leaves, which causes the learned approximation
to be better in the center of nodes than at their edges, leading to visible darkening at leaf boundaries.

All the above problems result in undesired non-uniform learning of the SD-tree, giving rise to the
artifacts in Figure 14 (middle). A popular and effective approach to mitigate such non-uniformity is
filtering. We therefore introduce a spatio-directional filter to the splatting of radiance estimates into the
SD-tree: instead of recording radiance estimates (L;) from vertices v within the leaf node that contains
the vertex position x, and direction w,, we record (L;) within those leaf nodes that fall into a spatial
neighborhood around x, and a directional neighborhood around w,.

More concretely, given (L;) at a vertex v, we begin by traversing the spatial tree to obtain the spatial
footprint and corresponding volume V of the leaf containing x,; this footprint determines the filter radius
and thereby the size of the spatial neighborhood. We then traverse the spatial tree again, this time visit-
ing each node that has non-zero volume overlap with the spatial footprint from before, centered around
x,. For each spatial leaf with non-zero volume overlap V, that we find this way, we record the radiance
estimate weighted by the fraction of overlapped volume (L;) - V,/V.

Directional filtering works analogously, only that we perform area-based filtering over the cylindrical
domain as opposed to spatial filtering over space.

Stochastic Filtering.  When implemented as described above, the filtering operation comes with
significant computational cost. This cost can be mostly avoided at the expense of slightly worse quality by
replacing the deterministic filtering that traverses entire sub-trees with stochastic filtering that traverses
only towards a single leaf: after obtaining the spatial footprint, the position x, is jittered (i.e. positioned
uniformly at random) within the footprint’s volume—again, centered around x,—and then recorded in
the SD-tree as done in the original algorithm without weighting the radiance by V,/V.

To find the sweet-spot between quality and computational cost, it is important to consider the com-
pounding effect of enabling deterministic spatial and directional filtering at the same time: since deter-
ministic spatial filtering increases the number of visited quadtrees (from one to many) and directional
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Figure 15: Learning the selection probability of multiple importance sampling on top of our other ex-
tensions reduces noise in difficult glossy light transport (top) and prevents path guiding from producing
much worse results in places that are simple to render using BSDF sampling alone (bottom). We use 1024
samples per pixel and we quantify noise using mean absolute percentage error averaged over each image.

filtering increases the number of visited leat quads for each visited quadtree (again, from one to many),
the total computational cost is roughly proportional to the product of the spatial filtering overhead and
the directional filtering overhead. It follows, that negating the overhead via stochastic filtering on only
one of the two filtering operations provides most of the possible speedup.

Additionally, since spatial filtering operates on 3 dimensions whereas directional filtering operates
only on 2, the overhead caused by spatial filtering is bigger.

Because of these two reasons, we perform spatial filtering stochastically and use deterministic filter-
ing only in the directional domain. The computational overhead of this combined approach over vanilla
PPG is around 20% in a Mitsuba-rendered CORNELL Box and below 10% in Hyperion-rendered produc-
tion scenes. The smaller overhead in Hyperion is a consequence of more computation being devoted to
rendering significantly more complex scenes.

Subdivision Criterion. The original PPG algorithm subdivides spatial leaf nodes when they receive
more than ¢ = 12000 - 2/2 samples. Due to the increased robustness from filtering, we are able to reduce
this number to ¢ = 4000 - 2¥/2, thereby leading to a finer subdivision and therefore not only a more robust
but also a more fine-grained fit; see Figure 14.

10.5 Extension 3: Optimization of MIS Selection Probability

Our third extension aims at on-line learning of the multiple-importance-sampling selection probability
between SD-tree and BSDF sampling such that variance is minimized. This addresses the problem of
overusing the SD-tree on glossy surfaces and when it approximates incident radiance poorly. We demon-
strate the benefits of this extension in Figure 15.

Objective Definition. Recall that in PPG, radiance sampling is combined with BSDF sampling using
the one-sample MIS model [Veach and Guibas, 1995]. Mathematically, this amounts to sampling accord-
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ing to a linear combination of the SD-tree PDF g o< L; and the BSDF PDF P, o< fs
g(wilx, wo; @) = a - pr(wilx, wo) + (1 — &) - g(wi|x) , (8)

where « is the selection probability that determines how frequently each of the two strategies is sampled
from. A value of 0 amounts to always sampling from the SD-tree, whereas a value of 1 corresponds to
always using BSDF sampling.

Many radiance-based guiding approaches use a fixed value of @ = 0.5 [Miiller et al., 2017, Vorba et al.,
2014], whereas others that learn the product are typically more aggressive: Herholz et al. [2018, 2016] use
a = 0.1. However, it would be better to let a vary spatially to account for the fact that BSDF sampling
may be more suitable in some scene regions, whereas guiding may be more appropriate in others.

With this motivation in mind, our objective is to replace the fixed selection probability a with a learned
function «(x). To derive a learning algorithm for «(x), we begin by formalizing the desired form that we
would like the combined PDF g to take.

Zero variance can only be attained when sampling proportional to the product of incident radiance
and the BSDE i.e. according to the “ideal” PDF p(wi|x, w,) o Li(x, wi) fs(X, w;) cos y;. Although it is
impossible to perfectly match the ideal PDF simply by varying a(x), our goal is to optimize a(x) such that
the combined PDF g at least approximates the ideal PDF p as closely as possible.

Since the goal of approximating p(w;|x, w,) with g(w;|x, w,) can be accomplished independently for
any spatio-directional coordinate (X, w,), we will omit x and w, from the following derivations. The
objective is then to approximate p(w;) with g(wi; ) = « - pr(w;) + (1 — «) - g(w;) by varying a. We
can formalize this as an optimization problem: we try to minimize a suitably chosen distance D(p || ¢; «)
between the PDFs p and ¢, referred to as “objective function”. The optimal selection probability is then
the one that minimizes the objective function

a =argminD(p || q; a) . )
a€l0,1]

Choice of Objective Function. Ideally, we would set the objective function D to the Monte Carlo
variance, such that the above equation directly corresponds to minimizing variance. Such an optimization
is actually feasible, but it is numerically unstable which leads to worse results compared to alternative
objectives [Miiller et al., 2018]. We therefore use another, more numerically stable function to capture
the difference between p and g: the Kullback-Leibler (KL) divergence.

The KL divergence between the ideal PDF p and the learned PDF g is defined as

. p(wi)
D ja) = w;) log - dw; . (10)
alpl1d:0) = [ plaiog 220 day
It is a good surrogate for the variance, because—like the variance—it attains a value of 0 if and only if
p = g and because it approaches infinity as g undersamples the integrand, i.e. when §(w;; a) approaches
zero for directions where p(w;) > 0.

10.51 Minimizing the Kullback-Leibler Divergence

Miiller et al. [2018] showed that the selection probability & can be optimized such that the KL divergence
Dxw(p || g; «) is minimized when « is the output of a neural network. In this section, we use an adapted
approach that does the same without involving a neural network.

We minimize the KL divergence by setting its gradient to zero. Ideally, we would do this in closed form,
which is unfortunately not possible because of the difficult integral. Such difficult minimization problems
are well studied in the field of machine learning and are often addressed using algorithms that build on
“stochastic gradient descent”. One of the most successful of such approaches is “Adam” [Kingma and Ba,
2014], which is remarkably simple to implement. For this reason, and for another reason that we will
mention shortly, we use Adam to optimize the selection probability a.
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The Adam algorithm takes stochastic estimates of the “loss gradient” (in our case: the gradient of the
KL divergence) as input and is guaranteed to converge to a (locally) optimal value if these estimates are
unbiased. Fortunately, it is possible to obtain unbiased KL-divergence gradient estimates: Miiller et al.
[2018] showed, that the gradient of the KL divergence can be written as an expectation over samples
drawn from an arbitrary PDF ¢,.°

VDo lla) = B |- L)

Vyilogg(wi; )| (11)
oEo | (o gq(wi; a)

which yields the desired unbiased gradient as the inner part of the above expectation for directions w;
drawn from g.

Evaluating this unbiased gradient is difficult, because we cannot evaluate the ideal PDF p(w; ) in closed
form. We can, however, replace the ideal PDF with an unnormalized unbiased estimate of it: the product
of incident radiance, the BSDE and the foreshortening term. This replacement introduces a constant
factor but otherwise leaves the unbiasedness of the gradient intact because of the linearity of expectations.
Slightly abusing notation and denoting (X) as an unbiased estimate of X, we have

¢ (VaDxr(p|l q; @) = — <L1(w1);§£:31) o8 Vi Valogg(wi; a) . (12)

Here lies the second reason behind our choice of using the Adam optimizer: Adam automatically compen-
sates for the constant factor ¢, so we ignore the factor and express the gradient only up to proportionality.

We can further expand the gradient estimate by applying the chain rule, finally leading to an expres-
sion that can be evaluated within a renderer

(Li(wi)) fs(wi)
gs(w;)
(Li(wi)) fs(wi) cos y; Vo g(wi; a)
gs(wi) q(wi; )
_ (Li(wi)) fs(wi) cos y; pr(wi) — g(wi)
- 4o(w1) deia) =

R COS V. R
(VeDiw (p | ; &) o — Vi ¥, log g(wi; )

It may be tempting to directly feed this gradient into the Adam algo- 10
rithm to optimize the selection probability «, but there is a remaining
problem we must solve before we can do so: the selection probability is
only valid in the range [0, 1], but the above optimization is unaware of
this constraint. The optimization could therefore produce invalid prob-
abilities outside of [0, 1]. We enforce probabilities that lie within [0,1] 0 +—F T
by modeling « in terms of an auxiliary “latent” variable 6 € R that can

take any real value without constraint, using the logistic sigmoid func-  Figure 16: Logistic sigmoid.
tion 0 : R— [0, 1]

0.5

1

a(0) = o(0) = =)

(14)

Since the sigmoid enforces valid probabilities «, we can optimize 6 using Adam without worrying about
the range of . To perform this optimization, we need an unbiased gradient estimate w.r.t. 6 instead of «,
which can be obtained using the chain rule

(VoDxr(p [l ¢; @) = (VaDxr(p |4 ) - Vi a(6)
= (VaDxe(p |5 @)) - (0) (1 — a(6))

_ (Li(wy)) fs(wi) cos y; pr(wi) — q(wi) a —a
gs(w;) a(ws ) (0)(1—a(6)) . (15)

°In practice, g is chosen to equal g, but implementation details of multithreaded optimization necessitate their distinction.
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Algorithm 3: Optimization of the MIS selection probability. One MIS optimization step is executed whenever
a radiance estimate is splatted into a spatial leaf of the SD-tree.

class SpatialLeaf()

t,m,v,0 < 0 // Initialize state

B, < 0.9, B, < 0.999, ¢ « 1078, learningRate <— 0.01, regularization <— 0.01  // Hyperparameters

function adamStep(Vy)
t—t+1 // Increment iteration counter
| < learningRate - /1 — B5/(1 — ) // Compute de-biased learning rate
m<« B, -m+(1—pB,) Vg // Update first moment
vepB,-v+(1—-,) VgV // Update second moment
0+ 0—1-m/(\/v+e) // Update parameter

function misOptimizationStep(x, w;, w,, radianceEstimate, samplePdf)
productEstimate <— radianceEstimate - f;(w;) cos y,

bsdfPdf < pr. (wi|w,, X)

learnedPdf < isDiscrete(f;(w;)) ? 0: q(w;|x)

spin lock (this) // Ensure 0 is only optimized by one thread at a time
a < selectionProbability()
combinedPdf < « - bsdfPdf + (1 — «) - learnedPdf // Equation 8
V. + —productEstimate - (bsdfPdf — learnedPdf)/(samplePdf - combinedPdf) //Equation 13
Vo Vu-a(l—a) // Chain rule
regGradient < regularization - 0 // L2 regularization to avoid sigmoid saturation
adamStep(Vy + regGradient)

function selectionProbability() // Called by the path tracer to use the learned probability
L return 1/(1 + ¢~%) // Sigmoid as in Equation 14

10.5.2 Integration of MIS Optimization into PPG

In this section, we describe how we implemented the selection-probability optimization using Adam
within the PPG algorithm.

Spatial Discretization. Our goal is to optimize the selection probability « spatially and jointly with
the learning of the SD-tree. To this end, we utilize the spatial subdivision of the SD-tree: in each spatial
leaf node, we not only store a directional quadtree, but also the latent variable 6 controlling the selection
probability @. During rendering, whenever we splat a radiance estimate into a spatial leaf node, we not
only record it within the corresponding quadtree, but we also execute an Adam optimization step.

Multi-Threading. The gradient computation and Adam optimization are not thread-safe, so mutual
exclusivity must be guaranteed when two threads attempt to perform an optimization step within the
same spatial leaf concurrenty. Fortunately, such thread collisions are rare, because the spatial binary tree
has a resolution that approximately matches the spatial density of path vertices. We are therefore able to
use an inexpensive spin lock, with which we observed near-perfect linear performance scaling up to 48
threads, which is the maximum number we could test on.

Regularization. Recall, that we express the selection probability as the sigmoid of a latent variable
a(0) = o(0). This sigmoid levels off as 6 approaches positive or negative infinity (see Figure 16), i.e. its
gradient approaches zero. Unfortunately, small gradients make gradient-based optimizers such as Adam
less effective, which is known in machine learning as the “vanishing-gradient” problem.

We limit the vanishing-gradient problem by introducing L? regularization to our latent variable 6,
which “encourages” the optimization to prefer values of 6 that are closer to zero, i.e. values of « that are
closer to 0.5. This amounts to modifying our objective function (the KL divergence) to include an additive
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term 162, where A controls the strength of the regularization. The modified gradient estimate is then
(Vo(Dxr(p | 4; @) +16%)) = (VeDr(p || §; ) + VoA6® = (VeDrw(p || g ) +210. (16)

We pick a weak regularization A = 0.005, allowing the optimization to produce selection probabilities
close to 0 or 1 (e.g. 0.01 or 0.99), but not close enough that the optimization suffers.

Discrete-Smooth Hybrid BSDFs. The above optimization can handle BSDFs that are hybrids of
smooth and discrete reflectances. Abusing mathematics a little bit, whenever a discrete component is
sampled, the smooth SD-tree PDF g(w;) must be treated as zero” (see Algorithm 3), similar to how smooth
BSDF components are usually treated as zero in such cases.

Code. We provide pseudocode of the full MIS optimization—including Adam—in Algorithm 3. The
pseudocode also includes the implementation details that we discussed in the preceeding paragraphs. For
an actual implementation within the Mitsuba renderer, we refer to our public code at https://github.com/
Tom94/practical-path-guiding.

10.6  Adjoint-Driven Russian Roulette and Splitting

Russian roulette is an important building block for making almost any path tracer efficient. Unfortu-
nately, path-throughput-based russian roulette typically has detrimental effects on guided path tracers,
because the throughput does not account for incident illumination (the adjoint) encountered upon path
completion. While it is possible to avoid such detrimental effects by entirely disabling russian roulette,
this comes with potentially significant extra computational cost.

Adjoint-driven russian roulette (and splitting) [Vorba and Ktivanek, 2016] solves this issue by incor-
porating an estimate of the adjoint—the learned incident-radiance approximation Li—into the russian-
roulette decision. We use this scheme because of its increased efficiency and because of its easy imple-
mentation within a path-guiding algorithm that learns incident radiance. For details on adjoint-driven
Russian roulette and splitting we refer to Sec. 7.7.

10.7 Miscellaneous Implementation Details

In the following, we discuss miscellaneous implementation details of the PPG algorithm that are easy to
overlook but greatly improve its effectiveness.

Next-Event Estimation. Although path guiding is able to sample complex general illumination, it
often performs worse than next-event estimation (NEE) on direct illumination, especially when NEE uses
an importance cache such as the one used in Hyperion [Burley et al., 2018]. Because of this, we enable
NEE and do not train the SD-tree with direct illumination from light sources that are sampled by NEE.
The SD-tree is therefore trained using all indirect illumination and only direct illumination from light
sources that are not sampled by NEE (e.g. emissive volumes).

Parameterization of Directional Distribution. There are a number of possible ways to param-
eterize the directional guiding distribution. We use world-space-aligned cylindrical coordinates for two
practical reasons. First, world-space alignment—as opposed to surface alignment—allows the usage of
the same distribution of incident radiance when there is high-frequency normal variation. Second, we
use cylindrical coordinates—as opposed to spherical coordinates—due to their area-preserving corre-
spondence to the surface of the solid sphere.

"Most guiding methods—including PPG—do not learn discrete components. However, if a discrete component was learned,
then it should rnot be treated as zero in this situation.
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Rapid Adaptation of the SD-tree to Large Scenes. Itis common in production to encounter
vast scenes of which only a small portion is visible to the camera. For a path-guiding data structure to be
effective in such situations, it must rapidly adapt to the distribution of paths being traced. Although the
SD-tree does continually adapt to the distribution of paths, the amount of adaptation within each iteration
is relatively small. To address this problem, we perform a small number of 1-sample-per-pixel iterations
(e.g. 8) at the beginning of rendering. This has the effect of “initializing” the subdivision of the SD-tree to
match the camera frustum before it is used for path guiding in the remaining rendering process.

10.8 Remaining Issues and Future Work

In this section, we mention several known issues of PPG that we were not able to address or did not have
time to investigate yet. These remaining issues provide interesting directions of future work, both within
the context of PPG as well as in the pursuit of replacing PPG (or components of it) with better alternatives.

Subdivision of the SD-tree. In Section 10.4, we proposed to combat non-uniform learning of the
SD-tree using spatio-directional filtering. While this approach is effective at reducing the symptoms of the
problem—i.e. a bad, non-uniform incident-radiance approximation—it does not tackle its fundamental
causes, which are rooted in PPG’s suboptimal subdivision scheme. In the future it is worth investigating
alternative data structures such as the BSP-tree proposed by Herholz et al. [2019] (described in detail in
Section 11.5.1) or neural networks that internally learn a spatio-directional representation [Miiller et al.,
2018].

Product Guiding. The SD-tree can only learn to guide according to incident radiance, which limits its
practicality compared to alternative approaches that can guide according to the full product [Herholz et al.,
2018, 2016, 2019, Miiller et al., 2018]. Although it is possible to sample from the product of the SD-tree
and a BSDF represented by Haar wavelets [Clarberg et al., 2005] or spherical harmonics [Jarosz et al.,
2009], such representations are difficult to obtain for rich, parametric BSDFs such as the Disney BSDF
[Burley, 2012] which is used in the Hyperion renderer.

Temporal Guiding. The guiding of motion-blur effects is difficult with PPG, because the motion can
cause large incident-radiance variation that is not captured by the SD-tree. As Miiller et al. [2017] already
suggested, it may be possible to simply add the temportal dimension to the spatial binary tree (making it
a 4-D spatio-temporal binary tree), but this is yet to be tested.

Volumetric Guiding. PPG performs poorly when used to guide volumetric path tracing. This is be-
cause of a number of reasons such as the lack of product guiding with the phase function and the lack
of guided distance sampling. Progress towards volumetric path guiding has been made by Herholz et al.
[2019] using a spatial data structure similar to our binary tree in combination with a directional paramet-
ric mixture model. Sebastian Herholz will discuss more details in Section 11.5.

Simple Light Transport. Lastly, there is still room for improving PPG under easy-to-render illumi-
nation. Even though our extensions achieve better results than vanilla PPG in difficult scenes (Figure 15,
top) and surpass unguided path tracing in some simple settings (e.g. in Figure 15, bottom), there are
remaining cases where unguided path tracing is superior. These are caused mostly by the 10-20% com-
putational overhead of the SD-tree and the discarding of all but the last 4 PPG iterations (around 6.25%
of all samples). It is therefore important future work to further improve upon the algorithm and to inves-
tigate the possibility of effective guiding of direct illumination that complements next-event estimation
for better overall efficiency.
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10.9 Conclusion

Our goal was to obtain a path-guiding algorithm that not only accelerates rendering of difficult light
transport, but also performs no worse than simple unidirectional path tracing under simple illumination.

To this end, we reviewed the “Practical Path Guiding” algorithm [Miiller et al., 2017] and introduced
three extensions that helped us improve its effectiveness and robustness. First, we avoided discarding
large fractions of the samples by weighting them approximately proportional to their inverse variance.
Next, we improved the quality of the learned SD-tree by spatio-directional filtering of splatted radiance
estimates, and lastly, we showed how the MIS selection probability can be optimized to increase the overall
efficiency of guiding.

After that, we discussed a number of important details to consider when implementing PPG with
our extensions in a production environment. These include the combination of PPG with next-event
estimation, the use of adjoint-driven russian roulette, and various aspects of effectively utilizing SD-trees.

Unfortunately, all of this was not quite enough to make PPG strictly better than an unguided path
tracer under simple illumination. In some scenes—for example directly lit outdoor environments—
unidirectional path tracing sometimes outperformed our extended PPG by a small margin that is mostly
caused by the 10-20% computational overhead of the SD-tree and our discarding of all but the last 4 iter-
ations (around 6.25% of all samples). Nevertheless, our extensions significantly shrunk the gap between
both approaches while improving PPG in difficult situations beyond what it was capable of before.

Additionally, our extensions are not inherently limited to PPG. With minor modification, they are
also compatible with alternative guiding schemes [Vorba et al., 2014], other incident-radiance represen-
tations [Herholz et al., 2019, Miiller et al., 2018, Vorba et al., 2014], and even different paradigms, such as
guiding in primary-sample space [Guo et al., 2018, Miiller et al., 2018, Zheng and Zwicker, 2018] or path
space [Simon et al., 2018].

We are excited about the ongoing adoption of path guiding in movie production and look forward to
turther progress that will be made in the field.
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